
Adaptive Scheduling for Edge-Assisted DNN Serving

Jian He
UT-Austin

Austin, USA

jianhe@cs.utexas.edu

Chenxi Yang
UT-Austin

Austin, USA

cxyang@cs.utexas.edu

Zhaoyuan He
UT-Austin

Austin, USA

zyhe@cs.utexas.edu

Ghufran Baig
UT-Austin

Austin, USA

ghufran@cs.utexas.edu

Lili Qiu
UT-Austin

Austin, USA

lili@cs.utexas.edu

Abstract—Deep neural networks (DNNs) have been widely used
in various video analytic tasks. These tasks demand real-time
responses. Due to the limited processing power on mobile devices,
a common way to support such real-time analytics is to offload the
processing to an edge server. This paper examines how to speed up
the edge server DNN processing for multiple clients. In particular,
we observe batching multiple DNN requests significantly speeds
up the processing time. Based on this observation, we first design
a novel scheduling algorithm to exploit the batching benefits of
all requests that run the same DNN. This is compelling since
there are only a handful of DNNs and many requests tend to
use the same DNN. Our algorithms are general and can support
different objectives, such as minimizing the completion time or
maximizing the on-time ratio. We then extend our algorithm
to handle requests that use different DNNs with or without
shared layers. Finally, we develop a collaborative approach to
further improve performance by adaptively processing some of
the requests or portions of the requests locally at the clients. This
is especially useful when the network and/or server is congested.
Our implementation shows the effectiveness of our approach
under different request distributions (e.g., Poisson, Pareto, and
Constant inter-arrivals).

Index Terms—deep neural networks (DNNs), real-time video
analytics, batching DNN requests, scheduling algorithm

I. INTRODUCTION

Motivation: Deep neural networks (DNNs) are widely used

in many applications, including autonomous driving, cognitive

assistance, video surveillance and AR/VR. Many applications

demand real-time inference. Existing works speed up DNN

inference in two ways. One way is to train simpler models [26]

to reduce computation overhead or use compressed DNNs (e.g.,
[15], [37]). While significant progress has been made in this

front (e.g., MobileNet [20], [53] and ShuffleNet [40], [66]),

depending on the model complexity and learning tasks [5], [59],

[64], it is not always feasible to achieve real-time guarantees

on the mobile devices. A complementary way for the mobile

systems is to offload expensive DNN execution to edge servers

(e.g., [50], [35]). Edge server is often preferred due to lower

network latency. Collaborative DNN [32], [21] leverages the

client’s computation resources to further reduce processing

time. How to efficiently serve many requests on a server

and support collaborative DNN execution poses an interesting

system challenge, especially for edge servers with limited

memory and computational resources. Thus, we explore how to

efficiently serve many clients on an edge server. This capability

has significant implication on the viability of many mobile

applications, including autonomous driving, smart homes,

surveillance, as it is common for multiple mobile devices

to share one edge server to run DNNs for their analytic tasks.

Opportunities and challenges: A natural way to serve

multiple inference requests (e.g., different cameras in the setting

of video surveillance or autonomous driving) is to run requests

in FIFO. Batching these requests together significantly enhances

efficiency due to coalesced memory access (e.g., each weight in

a DNN is loaded to the cache only once and used for all input

data rather than loaded for each input data separately [28], [22]).

Our measurement on a server with an Nvidia Tesla P100 GPU

shows it takes around 24 ms for GoogleNet [56] to process

one request, and 132 ms to process 10 requests one by one.

In comparison, it takes only 28 ms to process 10 requests as a

batch, which is only slightly higher than running one request.

It is necessary to have a high enough request rate to create

a batch. This is common since video analytic tasks require

high frame rate. For example, video surveillance requires 15

frames/second (FPS) [19] on each camera and many cameras

are deployed across the environment. A typical experimental

automated-driving vehicle consists of ten or more cameras

monitoring different fields of view, orientations, and near/far

ranges. Each camera generates images at 10-40 FPS depending

on its function [63]. Moreover, an edge server can serve requests

from different users, organizations, or vehicles, which further

increases the request rates. These requests go through one or

more DNNs, and some of these DNNs can be shared.

Batching benefit has been widely recognized, but designing

schedulers to exploit these benefits in DNN job processing is

underexplored. Batching in DNN processing is different from

general job batching because the latter batches either entire jobs

or nothing, while DNN jobs go through well-defined layers

and batching can take place in multiple layers (i.e., partial

batching). Scheduling DNN jobs can make a big difference on

the batching opportunities, hence the performance.

Designing batch-aware scheduling algorithms is challenging.

Simply batching all or a fixed number of jobs is not always

desirable since it requires earlier requests to wait to form a large

batch and the batching benefit may vary significantly with the

job arrival rate and the type of DNN layers. This motivates us

to develop scheduling algorithms to support various objectives.
Our approach: We develop a novel scheduling algorithm for

requests using the same DNN as the same video analytics task

typically uses the same DNN. For example, image classification

uses GoogleNet [56], object detection uses SSD [38], and

image segmentation uses FCN [39]. Initially, without memory

constraints, we develop a dynamic programming algorithm to

minimize completion time for a given set of requests. Then,

considering memory constraints that limit batch sizes, we

incorporate request deadlines and maximize the on-time ratio

of jobs while leveraging batching benefits.

521

2023 IEEE 20th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

2155-6814/23/$31.00 ©2023 IEEE
DOI 10.1109/MASS58611.2023.00071

20
23

 IE
EE

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ob

ile
 A

d
H

oc
 a

nd
 S

m
ar

t S
ys

te
m

s (
M

A
SS

) |
 9

79
-8

-3
50

3-
24

33
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
A

SS
58

61
1.

20
23

.0
00

71

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 16,2024 at 18:52:25 UTC from IEEE Xplore. Restrictions apply.

We further generalize our algorithm to handle requests that

do not run the same DNN. In particular, we consider two

scenarios: (i) requests that use different DNNs without shared

layers and (ii) requests that go through multiple DNNs and

some of these DNNs are shared. Both scenarios are common.

For example, some clients may run image classification using

ResNet [17] while other clients may run image segmentation

using FCN [39]. This falls into (i). A common scenario for

(ii) arises when requests go through multiple DNNs and some

of these DNNs are shared. For example, video prediction and

segmentation (e.g., SDCNet [51] and RTA [24]) share the

same optical flow DNN model but use different DNNs for the

remaining processing. In this case, the requests at the optical

flow DNN can be batched together. Similarly, human pose

estimation usually consists of multi-person detection using a

shared model (e.g., Faster RCNN [52]) and predicting each

person’s pose using different models (e.g., IEF [4] and G-

RMI [47]). Therefore, the requests at the object detection DNN

can be batched together. We design scheduling algorithms for

both (i) and (ii). We extend our scheduling algorithm to support

DNNs with different numbers of shared layers.
Finally, we consider that a client can process some requests

to further reduce the request completion time. We develop

two offloading algorithms that consider network delay along

with server and client processing time to adaptively determine

whether to offload and how much to offload. Our client-side

optimization is inspired by [32] but differs in that we consider

the server’s batching benefit to maximize the efficiency.
We implement our approach on an edge server with an Nvidia

Tesla P100 GPU and 16GB GPU memory. We implement a

client on the Nvidia Jetson Nano with a 128-core Maxwell

GPU and 4 GB memory, which has been widely used as a

client platform (e.g., [23], [14]). Video frame transmissions

are generated using WiFi and LTE packet traces.
Our main contributions are as follows:

• We design a batching-aware DNN scheduling algorithm to

efficiently serve requests for same DNNs, which is flexible

to different objectives (e.g., min completion time, max on-

time ratio). Our schemes significantly reduce the completion

time and improve the system capacity (i.e., max number of

concurrent serving requests) by 20%-400% over baselines

when serving a single DNN. When maximizing the on-time

ratio, our scheme improves the system capacity by > 22%

over the Earliest Deadline First (EDF) with batching strategy.

• We extend our algorithm to support multiple DNNs with

different numbers of shared layers. Our scheme improves

the system capacity by more than 200% over baselines.

• We enable collaborative DNN execution at the client side to

speed up processing. The client can process some requests

locally to reduce the server load. Collaborative execution

further improves the system capacity by > 67% over our

optimized server only strategy. We implement our approaches

on commodity hardware to demonstrate effectiveness.
II. RELATED WORK

Speeding up client-side DNN execution: One way to

speed up DNN inference is to train simpler DNNs (e.g.,

MobileNet [20], [53], SqueezeNet [26], ShuffleNet [40], [66])

or compress DNNs [34], [61]. Despite significant advances,

several important learning tasks cannot run on mobile devices

in real time (e.g., semantic segmentation, activity recognition,

super-resolution video reconstruction). DeepMon [25] and

DeepCache [62] reuse pre-cached intermediate DNN output to

avoid redundant computation for same input. NestDNN [10]

adaptively prunes filters from convolutional layers to reduce the

computation demand when the available resource is insufficient.

These approaches speed up DNN execution at the cost of

degrading accuracy. Deepeye [41] and uLayer [33] speed up

DNN execution by using both CPU and GPU. We mainly focus

on exploiting batching benefits in GPU.

Adjusting DNN configurations: The computational cost

of DNNs depends on the input data size (e.g., the resolution

and frame rate of the input video for video analytics tasks).

Existing approaches, such as Deepdecision [50], DARE [36],

Chameleon [30]), optimize latency by adaptively adjusting

the video resolution and frame rate according to the network

condition and server workload. These approaches speed up the

processing but reduce the accuracy. It also needs an accurate

model that captures the relationship between the accuracy and

computational cost, which is challenging.

Collaborative DNN execution: Collaborative processing

leverages the client’s computation resources to further reduce

processing time. Instead of offloading all computation, several

works (e.g., [32], [21]) partition DNN processing between the

client and server. Partitioning has to be done carefully since

intermediate results tend to be larger than the input data. Our

work complements the existing work by developing batching-

aware collaborative processing to exploit batching benefits.

Batching user requests: [2], [22], [54], [31], [6], [13]

batch DNN inferences to improve completion time. Nexus [54]

develops a new bin packing based algorithm to batch entire

jobs Our work advances state-of-the-art as follows: (i) it

introduces layer-wise batching-aware scheduling to create more

batching opportunities in a single DNN, (ii) it enables batching

for multiple DNNs with shared layers, and (iii) it optimizes

different performance objectives (e.g., latency and on-time

ratio). In Sec. V, we show our system reduces the completion

time by 25-32% over Nexus when running SDCNet and RTA.

We explicitly optimize completion time or the number of

tardy jobs for layer-wise batch-aware scheduling whereas

LazyBatching [6] blindly batches requests as long as they

do not violate SLA, however batching may not always improve

performance and should be used strategically. Clockwork [13]

does not consider layer-wise batching, which results in a much

lower batching opportunity than ours. Mainstream [29] and

MCDNN [16] re-train the existing DNNs so that they have some

common layers. Requests can be batched at those common

layers to reduce processing delay. We do not modify the DNNs

and use scheduling to increase the batching opportunities.

Scheduling: There are several dynamic programming based

scheduling algorithms (e.g., [3], [49]). Different from the

existing works, which treat each request as a single process, we

develop scheduling algorithms for DNNs where each request

522

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 16,2024 at 18:52:25 UTC from IEEE Xplore. Restrictions apply.

involves multiple layers and our scheduler determines the

order of requests and their corresponding layers to process.

[57], [8], [11] batch only requests arriving at the same time

and improve resource utilization across multiple GPUs. Our

work supports more fine-grained layer-wise batching. Least

Laxity [65] assigns a priority to a job based on its running

time, but the job’s actual running time may be different if

batched with other jobs. In comparison, we use the running

time under batching for scheduling, which is more accurate.

III. OUR APPROACH

In this section, we first formulate the scheduling problem to

minimize the completion time of a single DNN and present

our dynamic programming algorithm (Sec. III-A). We then

consider how to maximize the job on-time ratio (Sec. III-B).

We further generalize to multiple DNNs with or without shared

layers (Sec. III-C). Finally, we extend it to support collaborative

DNN execution, where clients can process portions of the DNN

requests locally (Sec. III-D).

A. Completion Time of One DNN

We develop a scheduling algorithm to optimize the comple-

tion time of a given set of requests. When a batch of requests

finishes running a layer and new requests arrive, we re-compute

the schedule for the updated set of requests. A unique aspect of

batching-aware DNN scheduling is that requests are processed

according to the DNN layer structure and can be batched with

other requests only at the same layer.

1) Problem Formulation
Let N denote the number of layers in a DNN, R denote

the set of requests in the system, ai denote the i-th request’s

arrival time, ci denote the i-th request’s completion time. Any

active request stays in GPU memory till it completes. Our goal

is to minimize the total completion time.

Let li denote the layer at which the request i currently resides.

li = 1 indicates the request i is waiting to run the first layer.

Let hk(b) denote the running time of layer k for a batch size b.
Let B denote the upper bound of the batch size at a layer due

to limited GPU memory. We assume hk(b) has the following

property: hk(b1 + b2) ≤ hk(b1) + hk(b2) when b1 + b2 ≤ B.

hk(b) = +∞ if the batch size b > B. In our system with 16

GB GPU memory, B = 90 is sufficient for even the largest

model: SSD. We estimate B by pre-allocating memory based

on the maximum number of requests across all DNN layers.

This estimation is conservative since different layers may have

different number of requests. Dynamically adjusting memory

bound for different layers can reduce memory requirement with

considerable overhead due to frequent memory reallocation

across layers. So we leave it to the future work.

2) Scheduling Algorithm

Unbounded Batch Size: We derive the following property

for the optimal schedule using the FIFO scheduling (i.e., the

job arriving first finishes first though not necessarily first served

due to batching). For example, we can serve the second arriving

request and then batch with the first request so both requests

finish together.

Lemma 1: For a set of requests R without the batch size

bound, if we schedule a request, it will run till completion

before running another request that arrives later assuming FIFO.

Proof sketch: If we schedule a request, it will be better to run

this request till completion before running others. Switching to

running other requests before finishing processing the ongoing

requests that have already started causes all requests to have a

longer processing time. Refer to [1] for our proof.

Based on the above Lemma, we have the following policy

when there is no limit on the batch size. If we schedule a

request to run, it will batch all the requests that arrive earlier.

This policy has several advantages. First, it ensures earlier

requests will finish no later than later requests, which improves

fairness and avoids starvation. Second, we can develop a

dynamic programming algorithm to minimize the completion

time. The algorithm picks a few splitting points, divides a

request sequence into segments based on those points, and

runs the requests segment by segment. Note that the segment

means a sequence of requests batched together before running

till the end. The segments run in the order of their arrival time

(i.e., the segment involving the requests that arrive earlier is

executed earlier). Within each segment, the latest requests are

processed first and batched together with the earlier requests

when they meet at the same layer. Each segment runs without

stopping in the middle according to the Lemma 1.

For example, as shown in Figure 1, there are requests

A,B,C,D,E, in the system. We split them into two segments:

segment 1 involving requests A and B, and segment 2 involving

requests C, D, and E. We first run segment 2, where request C

runs from layer l3 to layer l4 alone, then batched with request

D and runs till layer l5, where it is batched further with request

E and runs till the end. Then we run segment 1, where request

A runs alone from layer l1 to layer l2, and is batched together

with request B and runs till the end.

Fig. 1. An example of request segments.

Dynamic programming: As we can see from the above

example, how to split requests into multiple segments has

significant impact on the performance. Our dynamic program-

ming algorithm selects the splitting points to minimize the

completion time. We sort the requests in an increasing order

of their arrival time such that the arrival time of requests j
and i, denoted as aj and ai respectively, satisfies aj ≤ ai for

any j ≤ i. Since we process requests in the FIFO manner, we

have lj ≥ li. Let min cost(i) denote the minimum cost of

running all requests from i to 1 under all possible ways of

splitting, and cost(i, j) denote the cost of running request i
and batched with all requests from i to j along the way till

completion without splitting. cost(i, j) can be computed by

summing up the running time of each layer starting from layer

523

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 16,2024 at 18:52:25 UTC from IEEE Xplore. Restrictions apply.

li weighted by active(j), the number of active jobs before

request j finishes including those that finish together with

request j. That is,

cost(i, j) = active(j)×
∑

k=li..N

hk(count(i, li)) (1)

where li is the layer at which request i resides, and count(i, l)
denotes the number of requests that the request i is batched

together till it reaches the layer l including the request i and the

existing requests at the layer l. The reason behind Equation 1

is that all jobs finishing together with request j need to wait

till they all finish. This includes running time from layer li
till layer N , where the cost of running a layer depends on the

number of requests at the layer. min cost(i) can be recursively

computed as follows.

min cost(i) = minj=1..i(min cost(j − 1) + cost(i, j))
(2)

Intuitively, to compute the minimum cost of running requests
i through 1 till completion, we search for the best splitting

point j where the requests from i to j run together in one

segment and incurs cost(i, j), and the cost of running requests

from 1 to j − 1 is computed recursively by considering all

possible ways of splitting.

Based on Equation 2, we implement a dynamic programming

algorithm that computes a table of size |R|, where the i-th
entry stores min cost(i). We sort all requests in terms of

their arrival, where request 1 arrives the earliest. We initialize

min cost(0) = 0 and set min cost(1) to the cost of running

request 1 by itself till completion. Then we add min cost(2),
which considers running the request 1 by itself and then the

request 2 versus batching the request 2 with the request 1.

Similarly, we compute min cost(3), which is the minimum

of running the first two requests using all possible splittings

and then running request 3 by itself, running the first request

by itself and batching the requests 2 and 3, and batching the

requests 1, 2, 3. As we can see, computing one table entry

incurs O(|R|) cost and there are O(|R|) entries. So the overall

time complexity is O(|R|2).
Theorem 1: Our dynamic programming algorithm minimizes

completion time for requests using the same DNN among all

FIFO schedules when there is no memory bound.

Proof: The property of the optimal FIFO schedule proved

in Lemma 1 indicates the request sequence is divided into

segments and the segment having the earliest arriving request

will run first. The remaining problem is how to find the splitting

points for the segments. Our recursive search enumerates all

splitting points for FIFO schedules. Hence it yields the lowest

completion time among all FIFO schedules. Our evaluation

considers memory constraints, and our scheme may not be the

optimal in this case but still performs well.

Speedup computation: The complexity of our dynamic

programming is O(|R|2). When the number of requests is

large, the dynamic programming incurs substantial delay. To

further speed it up, we treat all requests at the same layer as

one unit: batching all or no requests from a given layer. This

reduces the complexity to O(N2), where N is the number of

layers. In practice, only the layers that currently have requests

matter, which is even smaller.
We further speed up by clustering layers into fewer groups.

Let G denote the number of groups. This will reduce the

complexity to O(G2). In our evaluation, we divide the layers

into 5 groups, where each group has close to 1/5 running time of

the entire DNN. Our results show that clustering layers speeds

up our dynamic programming algorithm with only small impact

on the performance (e.g., clustering layers reduces running time

from 13ms to 2ms when computing schedule for 500 requests

while yielding similar performance).
Incremental update: The schedule is subject to change

upon finishing processing one or more requests at a layer and

the arrival of a new request. In this case, we run our scheduling

algorithm on CPU in parallel to processing the DNN requests

on GPU. If the earlier request that changes the layer moves

from layer l1 to layer l2 since the last schedule update, we reuse

the table entries after layer l2 at the time of last computation

and re-compute the remaining entries as well as adding a new

entry min cost(i) for the new request.
To ensure real-time computation of schedule, we consider

up to the first 500 active requests in the system. These requests

should also be the ones that occupy the last several layers. The

remaining requests will be considered in the future round. The

intuition is that the requests arriving late cannot be scheduled

immediately since the system already has many requests to

process. We can delay calculating the schedule for these

requests till the system is close to run them. Scheduling 500

requests takes less than 2ms.
Bounded Batch Size: When the maximum batch size is

bounded by B, we still apply the above dynamic algorithm

to find a schedule. The only modification is to set cost(i) to

+∞ if the number of requests between the request i ∈ R and

j ∈ R is larger than the bound B and we stop searching the

splitting points whose cost are already +∞.

B. Maximize On-Time Ratio of One DNN
So far, we focus on minimizing the completion time. Next

we explore minimizing the number of jobs that miss their

deadlines. (i.e., tardy jobs). We develop two algorithms.
Our first algorithm modifies EDF, which optimally minimizes

tardy jobs on preemptive uniprocessors without batching. To

harness batching benefits while satisfying the deadline, we

develop the following modified EDF. We sort all jobs by their

deadlines and pick the job from the head of the sorted list, and

add it to the current batch if all scheduled jobs still satisfy their

deadlines. If not, we will go to the next job and add it to the

batch if the deadline of all jobs in the batch is honored, and

iterate till the end of the list. With this, we honor the deadlines

as much as we can while opportunistically batching more jobs.
The modified EDF is not optimal with batching, so we

develop a dynamic programming algorithm in Section III with

two modifications: (i) we change the goal to minimize # of

tardy jobs, and (ii) we drop the jobs that missed their deadline.

The output schedule gives the estimated completion time of

each ongoing job, and we drop jobs that cannot meet deadlines.

While Lemma 1 no longer holds when minimizing the number

524

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 16,2024 at 18:52:25 UTC from IEEE Xplore. Restrictions apply.

of tardy jobs, the algorithm significantly outperforms the above

modified EDF in our evaluation since it explicitly considers

the impact of batching if the jobs satisfy the deadline.

C. Schedule Multiple DNNs
Multiple DNNs without shared layers: We schedule mul-

tiple non-shared layer DNNs across M DNNs using dynamic

programming. Then we enumerate and select the permutations

of DNNs the one that yields the smallest completion time.

Enumerating all permutations of DNNs is affordable since the

number of commonly used DNNs (M) is small. Running a

DNN means running all requests of that DNN till completion.

In the DNN permutations, we only consider model-wise

permutations – we run all requests of a DNN before we start

scheduling requests for another DNN. Since we re-compute the

optimal schedule whenever a batch of requests finishes running

a layer and new requests arrive, the optimized permutation

may change over time to take into account the new requests.

The scheduling algorithm outputs the order of the requests to

serve until existing requests execute a layer and a new request

arrives, in which case the schedule is re-computed based on

the latest input. Therefore, requests from different DNNs can

be served in an interleaved manner.

Multiple DNNs with shared layers: Next we consider

requests that go through multiple DNNs and some of them can

be shared. For example, the video prediction and segmentation

tasks both use FlowNet2 [27] to compute the inter-frame optical

flow and then use SDCNet [51] and RTA [24], respectively,

for the remaining processing. In this case, requests for these

two different tasks can be batched at FlowNet2.

The schedules for individual DNN are computed with a

similar strategy. When computing the completion time, we

ensure all requests belonging to the m-th DNN run till

completion and they will be batched with any requests arriving

earlier (including those belonging to other DNNs at the shared

layers) up to the bound B to maximize the batching benefit.

When multiple DNNs are loaded to the GPU memory, B is set

to the total GPU memory used by all DNNs. We then derive

the completion time for different orders of running DNNs and

select the permutation with the lowest completion time.

Incremental update: The schedule is subject to change

upon (i) a batch of requests finishing running a layer and the

arrival of a new request, or (ii) a request moving across the

boundary between shared and non-shared layers. Whenever any

such event occurs, we re-run our scheduling algorithm on CPU

in parallel to DNN execution on GPU. As before, we reuse the

previous table as much as possible. We first find the earliest

request that changes the layer since the last schedule update.

Say the request moves from layer i1 to layer i2. We re-use the

table entries after layer l2 at the time of last schedule update.

Reusing table entries allows a quick update of decision (e.g.,
within 2ms for 500 requests).

D. Collaborative DNN Execution
The GPUs on mobile devices are generally less powerful

than those at the server. Mobiles also adjust the GPU speed

to save power. For example, the Nvidia Jetson Nano device

can run VGG16 at 4fps and 11fps when it is at 5W and

20W mode. Despite slower processing speed than the server,

it can be beneficial for the mobile devices to process some

requests locally when the server is overloaded. We develop two

collaborative DNN execution strategies: (i) binary offloading

(i.e., a client either processes or offloads an entire request),

and (ii) partial offloading (i.e., a client processes the first few

layers and offload the rest to the server).

Binary offloading: The mobile device can process the

request locally if it the device can finish the request within the

deadline. Otherwise, it compares the local vs. remote processing

time (including network delay) and picks a lower one so that

the job can finish faster. Local processing time can be simply

estimated using measurement. Our evaluation uses the average

running time of the DNN across 100 runs as the estimate.

Remote processing time is the sum of the network delay and

server processing time, where the network delay is estimated

based on the transmission size and network throughput using

exponential weighted moving average (EWMA) with a weight

of 0.3 on a new delay sample and the server processing time is

determined using the above dynamic programming algorithm.

Partial offloading: To improve efficiency, we allow clients

to process their requests locally until the server is available,

and then offloads the remaining processing. We call this partial

offloading and it further reduces the server load by processing

the first few layers on the client side. The server is allowed to

estimate and inform the client of the time required to finish

the new and existing requests. This is easy since the client can

perform one-time profiling [32] of popular DNNs to estimate

the processing time of various layers.

To transmit the intermediate results to the server, we

compress the output from the client after processing some

layers so that it can be sent efficiently to the server. We observe

that video compression is much faster than file compression

schemes (e.g., gzip), owing to available hardware accelerators,

so we use lossless video compression H.264. It takes 1.5ms to

compress at the client and 0.6ms to decompress at the server. In

order to use H.264, we quantize the intermediate output from

the client to INT8 and feed the output to the server. Running

quantization incurs considerable overhead, so we run quantized

models to remove the need of quantizing the input or output

while speeding up DNN processing. Running quantized models

yield little degradation in the accuracy [7], [60].

Even with compression, the intermediate data size for the

first few layers (which can finish on the client without incurring

large delay) is larger than the original image size. Therefore,

when the server is powerful as in our evaluation, partial

offloading is attractive only for fast networks, such as 5G.

On the other hand, when the server is slow (e.g., IoT devices),

partial offloading is useful even on a slow network as in [32].

Our approach automatically makes offload decisions based on

the server, client, and network speed.

Our offloading strategies can be extended to incorporate

the client’s energy (e.g., a client considers local processing

as an option only when its battery power exceeds a threshold.

Otherwise, it always offloads to the server).

525

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 16,2024 at 18:52:25 UTC from IEEE Xplore. Restrictions apply.

IV. SYSTEM IMPLEMENTATION

Our high-level system architecture is shown in Fig. 2.

A. Server Implementation

Fig. 2. System architecture.

The server uses Pytorch [48] to run DNNs on Nvidia Tesla

P100. It keeps track of requests at each layer and executes the

scheduling algorithms implemented in Python. We revise the

Pytorch DNN API to run a specified set of requests through

specified layers. We use CUDA synchronization [9] before

running a group so that GPU does not have any other active

threads. We also use CUDA synchronization before we start

running the next group so that all GPU threads for the existing

group of layers have already been completed. When we create

a large batch, we also need to copy the input for each request

to a continuous GPU memory block. The memory manager

allocates a memory block when forming a batch and releases

that block when the batch finishes running the next layer. Our

scheduling algorithm requires the running time of each layer

as the input. We perform one-time profiling for the running

time of each layer in various DNNs by varying the batch size.

B. Collaborative DNN Execution
We implement our client on Nvidia Jetson Nano [44]. Our

system can run on any device (e.g., IoT devices, etc). Less

powerful mobile devices tend to offload all DNN tasks, while

more powerful devices (e.g., Nvidia Jetson Nano/TX2) process

more requests locally. The client generates requests, which

consist of images, arrival time, and the DNN to use. As

described in Section III-D, the client determines whether to

offload the current request. If the request runs locally, the client

runs some or all layers in the DNN using TensorRT [45], which

is compatible with Pytorch. If the request requires complete

offloading, the client will transmit the JPEG [58] image and

index of the DNN to the server via TCP. The server loads the

DNN requested by the client to the memory, uses the JPEG

library from OpenCV [46] to decompress the image, and feeds

the decompressed data to the DNN as the input. If the request

requires partial offloading, the client transmits intermediate

results compressed by H.264 along with the next layer index

in the DNN to the server, and the server decompresses them

and finishes the remaining processing. The intermediate results

consist of a sequence of feature maps, each of which is a gray-

scale image. In both cases, upon finishing the DNN processing,

the server uses the TCP to transmit results to the client.

V. EVALUATION

A. Evaluation Methodology
DNN request traces: We generate DNN requests using a

Poisson process by default. The average arrival rate is 10−350
requests/sec. Each experiment runs 5000 requests. We also try

Pareto and deterministic inter-arrival time to understand the

impact of different request arrival patterns.

Network traces: We use the packet traces [12] collected

from LTE uplink connections. Each one lasts for around 20min.

The throughput is within 4–20Mbps. We use them to generate

the reception timestamp of requests at the server. We only use

transmission delay as the propagation delay to the edge server

is negligible compared with the DNN processing time [42].

Image traces: We use video traces from the dataset

MOT16 [43]. The images are resized to 240 × 240, which

is the input resolution of the pre-trained DNNs used in

our experiments. Our system can run DNNs with any input

resolution. The relative performance of different algorithms

remains the same when the image resolution and GPU memory

increase by the same amount. We use JPEG to compress images.

The size of images varies from 0.12Mbits to 0.33Mbits.

DNNs: We evaluate popular DNNs for different analytics

tasks: VGG16 [55], ResNet50 [18] and GoogleNet [56] for

classification, SSD [38] for object detection, SDCNet [51]

for video prediction, and RTA [24] and FCN [39] for video

segmentation. We load all the models to the memory at the

beginning, so there is no overhead of model loading when we

switch DNNs when running multiple DNNs.

Performance metrics: We use three metrics: (i) completion

time: the time duration from request generation to getting the

DNN execution results at the client. The completion time

captures the end-to-end latency of a request, which includes

the latency of every step the request goes through in our system,

including running the scheduling algorithm and performing

memory copy. (ii) ratio of on-time requests: the ratio of requests

that meet the user’s deadline, and (iii) capacity: the maximum

request rate at which the on-time ratio is above 90%. We can

easily see the system capacity from the on-time ratio graphs

by looking for the load beyond which the on-time request

ratio falls below 90%. The default deadline is 300ms and

150ms for evaluations with and without collaborative execution,

respectively. We also vary the deadline to understand its impact.

Algorithms: We compare our algorithms with two baselines:

(i) No-Batch, which runs all requests one by one, (ii) Batch,

which sorts the requests in an increasing order of their arrival

time and batches all requests starting from the first one up to

the bound B. Batch and Our algorithms run on the modified

version of PyTorch to support batching at different layers. Our

modified PyTorch has little overhead: its Batch=1 version is

equivalent to No-Batch and takes only 3ms longer.

Testbed: We develop a testbed to evaluate the performance

of various algorithms. We generate requests from multiple

clients using a single Linux machine based on real traces.

We run DNN requests on the edge server in real time, which

means that our results include all system overheads, including

memory copying, thread switching and overheads related to

monitoring and dynamically changing the PyTorch execution

graph. For collaborative execution, we use one real client to run

all the client-side components on Nvidia Jetson Nano and send

requests over WiFi. Requests from other clients are generated

by a Linux machine according to the real traces collected from

526

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 16,2024 at 18:52:25 UTC from IEEE Xplore. Restrictions apply.

Nvidia Jetson Nano. All evaluation results are from our testbed.
B. Minimize One DNN Completion Time

We compare the performance of serving requests for a single

DNN in our system. We vary the request rate from 10 to 150
requests per second (req/sec). The request deadline is 150 ms.

Fig. 3 shows our algorithm achieves the highest system

capacity for all DNNs. The capacity of our algorithm is 120,

160, 320, 70 and 110 for VGG16, ResNet50, GoogleNet,

FCN and SSD, respectively. The corresponding numbers are

100, 110, 90, 50 and 90 for the Batch strategy, and are

50, 50, 50, 30, 70 for No-Batching. Our algorithm improves

system capacity over Batch by 20%, 36%, 67%, 40%, 22% for

VGG16, ResNet50, GoogleNet, FCN and SSD, respectively;

the corresponding improvement over No-Batch is 140%, 200%,

400%, 40% and 57%. The system capacity improvement of

our algorithm comes from strategically harnessing the batching

benefits. ResNet50 and GoogleNet have more system capacity

than the other DNNs due to more batching benefits.

Moreover, our scheduling algorithm not only improves

capacity but also the completion time. It cuts down the

completion time by up to 53% over Batch when the request

rate is below the capacity of the Batch strategy and by up

to 29% over the No-Batch strategy when the request rate is

below the capacity of the No-Batch strategy. Our scheduling

algorithm also improves the on-time ratio. The improvement

is up to 69% over Batch and 37% over No-Batch.

Comparison with Nexus: Fig. 4 compares our approach

with Nexus [54] using requests with a Deterministic inter-

arrival time for VGG16. Our approach reduces the completion

time over Nexus by 10.5% when the request rate is 95. Our

benefit is even larger in multiple DNNs shown in Sec. V-D.

C. Maximize On-Time Ratio
Next, we consider minimizing # of tardy jobs. We compare

three schemes: (i) EDF, (ii) Our-Time, our algorithm that

minimizes completion time, (iii) Our-Tardy, our algorithm that

maximizes on-time ratio. The request deadline is 150ms. All

schemes drop jobs that have passed their deadline. Fig. 5

shows all schemes have close to 100% on-time ratio when the

request rate is low; Our-Tardy yields the highest on-time ratio

as request rate increases. For ResNet, the system capacity of

EDF, Our-Time, and Our-Tardy is 80, 80 and 100. For VGG,

the corresponding numbers are 90, 100 and 110. Our-Tardy

improves EDF and Our-Time by 22-25% and 10-22%. Our-

Time can satisfy more requests’ deadline than EDF even though

it does not explicitly consider the deadlines. This is because

Our-Time minimizes the completion time, which indirectly

reduces tardy jobs. EDF is less effective than Our-Time since

the batching benefit is not considered. Scheduling jobs by

the deadline order only may reduce the batching opportunity,

which causes higher running time and more tardy jobs.

We evaluate the on-time ratio by varying the deadline and

request rates. The system capacity of Our-Tardy is 110 when

the deadline is 150ms. Increasing deadline allows more requests

to be served on time. All schemes have close to 100% on-time

ratio when the request rate is 100 and the deadline is higher

than 200ms. When the request rate is 120 and the deadline

is higher than 200ms, both Our-Time and Our-Tardy improve

EDF by around 50%. When the deadline is below 200ms, both

of them improve the on-time ratio by more than 20% over EDF.

Therefore, our algorithm is effective in maximizing on-time

ratio even if requests have different deadlines.

D. Performance for Multiple DNNs

DNNs without shared layers: Fig. 6(a) shows the perfor-

mance when the requests are equally split between two DNNs

without shared layers. When serving ResNet50 and GoogleNet,

the system capacity of No-Batch, Batch and our algorithm are

30, 110 and 190. This is 500% and 73% improvement over

No-Batch and Batch. We also run VGG16 and GoogleNet. The

capacity of No-Batch, Batch and our algorithm are 50, 90 and

150, which is 200% and 67% improvement over No-Batch
and Batch. Our algorithm performs the best even for DNNs

without shared layers by increasing batching opportunities in

the same DNN. If the request rate is below 110, the on-time

ratios for Batch and our algorithm are 83% and 96%, when

serving ResNet50 and GoogleNet. We observe similar pattern

when serving VGG16 and GoogleNet. Even if the request rate

is within the system capacity of both our algorithm and Batch,

our algorithm can still achieve higher on-time request ratio

due to faster processing rate.

DNNs with shared layers: Fig. 6(b) shows the performance

when all requests go through the same optical flow model –

FlowNet2 and then are equally split between SDCNet and RTA.

The system capacity are 20, 60 and 90 for No-Batch, Batch
and our algorithm. So our approach yields 4.5× and 1.5×
system capacity of No-Batch and Batch, respectively.

Since these two models are more time-consuming than others,

we set the request deadline to 300ms for the evaluation. The

average completion time is 0.232sec and the average ratio of

on-time requests is 98% for our algorithm when the request

rate is within the capacity. Without batching requests at the

shared layers, the system capacity remains the same but the

average completion time increases to 0.314sec, which is 35%
higher than enabling batching. Its on-time request ratio reduces

to 42%. Thus, batching at the shared layers is beneficial.

Comparison with Nexus [54]: We compare our approach

with Nexus [54] when the requests all go through FlowNet2 and

then equally split between SDCNet and RTA. When the request

rate is 70, the following table shows our approach reduces the

completion time by 27%, 32%, 25% under Poisson, Pareto,

and Constant inter-arrival time, respectively.

Completion time (sec). Poisson Pareto Constant
Ours 0.124 0.157 0.109

Nexus 0.158 0.207 0.136

E. Collaborative DNN Execution
In our collaborative algorithm, a request is offloaded only

when local execution is too slow to meet its deadline. The

default deadline is 300ms. The server runs Our-Tardy to

maximize the on-time ratio. In our experiments, all the client

requests run either VGG16 or FCN. We vary the number of

clients and each client generates requests according to a Poisson

527

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 16,2024 at 18:52:25 UTC from IEEE Xplore. Restrictions apply.

 0.05

 0.1

 0.15

 0.2

 30 60 90 120 150C
om

pl
et

io
n

T
im

e(
se

c)

Request Rate

No batch
Batch

Our

(a) VGG16

 0.05

 0.1

 0.15

 0.2

 30 60 90 120 150 180

C
om

pl
et

io
n

T
im

e(
se

c)

Request Rate

No batch
Batch

Our

(b) ResNet50

 0.05

 0.1

 0.15

 0.2

 70 140 210 280 350

C
om

pl
et

io
n

T
im

e(
se

c)

Request Rate

No batch
Batch

Our

(c) GoogleNet

 0.05

 0.1

 0.15

 0.2

 30 60 90 120 150 180

C
om

pl
et

io
n

T
im

e(
se

c)

Request Rate

No batch
Batch

Our

(d) FCN

 0.05

 0.1

 0.15

 0.2

 30 60 90 120 150

C
om

pl
et

io
n

T
im

e(
se

c)

Request Rate

No batch
Batch

Our

(e) SSD

Fig. 3. Completion Time for a single DNN.

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 50 100 150 200 250 300 350

T
im

e
re

du
ct

io
n

ra
tio

(%
)

Request rate

Fig. 4. Comparison with
Nexus for VGG16.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120

O
n-

T
im

e
R

at
io

Request Rate

EDF
Our-Time

Our-Tardy

(a) ResNet

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120

O
n-

T
im

e
R

at
io

Request Rate

EDF
Our-Time

Our-Tardy

(b) VGG

Fig. 5. Maximize on-time ratio for ResNet and VGG.

 0.05

 0.1

 0.15

 0.2

 40 80 120 160 200

C
om

pl
et

io
n

T
im

e(
se

c)

Request Rate

No batch
Batch

Our

(a) wo/ share (ResNet, GoogleNet)

 0.1

 0.2

 0.3

 0.4

 30 60 90 120

C
om

pl
et

io
n

tim
e(

se
c)

Request Rate

No batch
Batch

Our

(b) w/ share (SDCNet, RTA)

Fig. 6. 2 DNNs with and without shared layers.

 0.05

 0.1

 0.15

 0.2

 100 200

C
om

pl
et

io
n

T
im

e(
se

c)

Request Rate

No Batch
Batch

Our(Binary)
Our(Server-Only)

(a) Binary offloading

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 40 80 120 160 200 240

C
om

pl
et

io
n(

se
c)

Request Rate

Server-Only
Binary
Partial

(b) Partial offloading

Fig. 7. Collaborative execution for VGG16.

process with a mean arrival rate of 10 req/sec. Among those

clients, one client is running all the client-side components on

Jetson Nano and communicates with the server via WiFi, while

the others are simulated to generate requests to the server.

Binary offloading: Fig. 7(a) shows the performance of

VGG16 with binary offloading. The ratio of requests offloaded

to server is 0.48, 0.53 and 0.60 for No-Batch, Batch and our

algorithm, respectively. Clients offload more requests in our

scheme due to its faster server processing. Our binary offloading

runs requests locally as long as they can finish within the

deadline. In this case, the completion time of the local requests

may increase. For example, Fig. 7(a) shows that the completion

time is around 0.125 sec for VGG16 and 0.136 sec for FCN,

which is higher than the server processing time in Fig. 3(a)

and 3(d). This is acceptable since the requests still finish in

time and client processing saves network and server cost.

With binary offloading, the system capacity in VGG16 is

70, 120 and 140 for No-Batch, Batch and our algorithm. The

corresponding numbers are 30, 50 and 70 for FCN. Binary

offloading improves the system capacity of serving VGG16 by

25% and 17% for Batch and our algorithm. When serving FCN,

the capacity improvement of Batch and our algorithm is 40%
and 29%. By running some requests locally on the client, our

scheme has a higher capacity. No-Batch has the same capacity

w/ and wo/ binary offloading for VGG16 because the client is

not fast enough to reduce the server’s queue.

Partial offloading: The completion time includes client

processing time, network transmission time, and server pro-

cessing time. Due to the relatively large intermediate results, we

multiply the throughput by 10× so that it is closer to that in the

5G networks. The client runs quantized DNN layers, uses H.264

to compress intermediate results, and transmits data over WiFi.

Fig. 7(b) shows the performance of partial offloading when

running VGG16. The binary offloading improves the system

capacity from 120 in the server-only scheme (Sec. III-A) to

140, and partial offloading further improves the capacity to 200,

which translates to 67% increase in the system capacity over the

server-only scheme. For FCN, the binary offloading improves

the system capacity from 70 to 90, and partial offloading further

improves to 120, out-performing the server-only scheme by

71%, since the client can more often perform local processing.

VI. CONCLUSION

We develop batch-aware DNN scheduling for edge servers.

It supports (i) different optimization objectives: minimizing

completion time or maximizing job on-time ratio, (ii) requests

using the same or different DNNs with or without shared

layers, and (iii) collaborative DNN execution to further reduce

processing delay by adaptively running some or portions of

requests locally at the client side. Our extensive evaluation

demonstrates its effectiveness.

REFERENCES

[1] https://osf.io/r7wsc/?view only=0daed714f6264c32a2f039a2eff9bd6b.
[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for
large-scale machine learning. In {OSDI} 16), pages 265–283, 2016.

[3] P. Brucker, A. Gladky, H. Hoogeveen, M. Y. Kovalyov, C. N. Potts,
T. Tautenhahn, and S. L. Van De Velde. Scheduling a batching machine.
Journal of scheduling, 1(1):31–54, 1998.

[4] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Human pose
estimation with iterative error feedback. In CVPR, 2016.

[5] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion. In ECCV, pages 801–818, 2018.

[6] Y. Choi, Y. Kim, and M. Rhu. Lazy batching: An sla-aware batching
system for cloud machine learning inference. In HPCA. IEEE, 2021.

[7] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev. Low-bit quantization
of neural networks for efficient inference. In ICCVW. IEEE, 2019.

[8] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica. Clipper: A low-latency online prediction serving system. In
NSDI, 2017.

[9] Cuda runtime API. https://docs.nvidia.com/cuda/cuda-runtime-api/group
CUDART STREAM.html.

[10] B. Fang, X. Zeng, and M. Zhang. Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision. In MobiCom,
2018.

528

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 16,2024 at 18:52:25 UTC from IEEE Xplore. Restrictions apply.

[11] Z. Fang, T. Yu, O. J. Mengshoel, and R. K. Gupta. Qos-aware scheduling
of heterogeneous servers for inference in deep neural networks. In CIKM,
pages 2067–2070. ACM, 2017.

[12] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein.
Salsify: low-latency network video through tighter integration between a
video codec and a transport protocol. In {NSDI} 18, 2018.

[13] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson,
and J. Mace. Serving {DNNs} like clockwork: Performance predictability
from the bottom up. In OSDI 20, pages 443–462, 2020.

[14] R. Hadidi, J. Cao, Y. Xie, B. Asgari, T. Krishna, and H. Kim.
Characterizing the deployment of deep neural networks on commercial
edge devices. In IISWC, 2019.

[15] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

[16] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishna-
murthy. Mcdnn: An approximation-based execution framework for deep
stream processing under resource constraints. In MobiSys. ACM, 2016.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778, 2016.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, June 2016.

[19] J. Honovich. Frame rate guide for video surveillance. https://ipvm.com/
reports/frame-rate-surveillance-guide.

[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861,
2017.

[21] C. Hu, W. Bao, D. Wang, and F. Liu. Dynamic adaptive dnn surgery for
inference acceleration on the edge. In INFOCOM 2019. IEEE, 2019.

[22] Y. Hu, S. Rallapalli, B. Ko, and R. Govindan. Olympian: Scheduling gpu
usage in a deep neural network model serving system. In Proceedings
of the 19th International Middleware Conference. ACM, 2018.

[23] Z. Hu, A. B. Tarakji, V. Raheja, C. Phillips, T. Wang, and I. Mohomed.
Deephome: Distributed inference with heterogeneous devices in the edge.
In EMDL, 2019.

[24] P.-Y. Huang, W.-T. Hsu, C.-Y. Chiu, T.-F. Wu, and M. Sun. Efficient
uncertainty estimation for semantic segmentation in videos. In ECCV,
2018.

[25] L. N. Huynh, Y. Lee, and R. K. Balan. Deepmon: Mobile gpu-based
deep learning framework for continuous vision applications. In MobiSys,
pages 82–95. ACM, 2017.

[26] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360,
2016.

[27] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox.
Flownet 2.0: Evolution of optical flow estimation with deep networks.
In CVPR, pages 2462–2470, 2017.

[28] Inference: The next step in gpu-accelerated deep learning. https://devblogs.
nvidia.com/inference-next-step-gpu-accelerated-deep-learning/.

[29] A. H. Jiang, D. L.-K. Wong, C. Canel, L. Tang, I. Misra, M. Kaminsky,
M. A. Kozuch, P. Pillai, D. G. Andersen, and G. R. Ganger. Mainstream:
Dynamic stem-sharing for multi-tenant video processing. In ATC, 2018.

[30] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica. Chameleon:
scalable adaptation of video analytics. In Sigcomm. ACM, 2018.

[31] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. Noscope:
optimizing neural network queries over video at scale. Proceedings of
the VLDB Endowment, 10(11):1586–1597, 2017.

[32] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang. Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge. In SIGARCH, volume 45, pages 615–629. ACM, 2017.

[33] Y. Kim, J. Kim, D. Chae, D. Kim, and J. Kim. μlayer: Low latency on-
device inference using cooperative single-layer acceleration and processor-
friendly quantization. In EuroSys, page 45. ACM, 2019.

[34] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro,
and F. Kawsar. Deepx: A software accelerator for low-power deep
learning inference on mobile devices. In IPSN. IEEE Press, 2016.

[35] L. Liu, H. Li, and M. Gruteser. Edge assisted real-time object detection
for mobile augmented reality. In MobiCom. ACM, 2019.

[36] Q. Liu and T. Han. Dare: Dynamic adaptive mobile augmented reality
with edge computing. In ICNP, pages 1–11. IEEE, 2018.

[37] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du. On-demand deep
model compression for mobile devices: A usage-driven model selection
framework. In MobiSys, pages 389–400. ACM, 2018.

[38] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg. Ssd: Single shot multibox detector. In ECCV. Springer, 2016.

[39] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In CVPR, pages 3431–3440, 2015.

[40] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical
guidelines for efficient cnn architecture design. In ECCV, 2018.

[41] A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, and
F. Kawsar. Deepeye: Resource efficient local execution of multiple deep
vision models using wearable commodity hardware. In MobiSys, 2017.

[42] R. McLaughlin. 5g low latency requirements. https://broadbandlibrary.
com/5g-low-latency-requirements/.

[43] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler. Mot16: A
benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831,
2016.

[44] Nvidia jeston nano developer kit. https://developer.nvidia.com/embedded/
jetson-nano-developer-kit.

[45] Nvidia tensorrt. https://developer.nvidia.com/tensorrt.
[46] Opencv. https://opencv.org.
[47] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler,

and K. Murphy. Towards accurate multi-person pose estimation in the
wild. In CVPR, pages 4903–4911, 2017.

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Neurips, 2019.

[49] C. N. Potts and M. Y. Kovalyov. Scheduling with batching: A review.
European journal of operational research, 120(2):228–249, 2000.

[50] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. Deepdecision: A mobile
deep learning framework for edge video analytics. In INFOCOM, 2018.

[51] F. A. Reda, G. Liu, K. J. Shih, R. Kirby, J. Barker, D. Tarjan, A. Tao,
and B. Catanzaro. Sdc-net: Video prediction using spatially-displaced
convolution. In ECCV, pages 718–733, 2018.

[52] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Neurips, 2015.

[53] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

[54] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-
murthy, and R. Sundaram. Nexus: a gpu cluster engine for accelerating
dnn-based video analysis. In SOSP, pages 322–337. ACM, 2019.

[55] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[56] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
CVPR, 2015.

[57] X. Tang, P. Wang, Q. Liu, W. Wang, and J. Han. Nanily: A
qos-aware scheduling for dnn inference workload in clouds. In
HPCC/SmartCity/DSS, pages 2395–2402. IEEE, 2019.

[58] G. K. Wallace. The jpeg still picture compression standard. IEEE
transactions on consumer electronics, 38(1):xviii–xxxiv, 1992.

[59] H. Wang, V. Bhaskara, A. Levinshtein, S. Tsogkas, and A. Jepson.
Efficient super-resolution using mobilenetv3. In Computer Vision–ECCV
2020 Workshops. Springer, 2020.

[60] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius. Integer
quantization for deep learning inference: Principles and empirical
evaluation. arXiv preprint arXiv:2004.09602, 2020.

[61] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convolutional
neural networks for mobile devices. In CVPR, pages 4820–4828, 2016.

[62] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu. Deepcache: principled
cache for mobile deep vision. In MobiCom, pages 129–144. ACM, 2018.

[63] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson, and
J.-M. Frahm. Re-thinking cnn frameworks for time-sensitive autonomous-
driving applications: Addressing an industrial challenge. In RTS, 2019.

[64] C.-L. Zhang, X.-X. Liu, and J. Wu. Towards real-time action recognition
on mobile devices using deep models. arXiv preprint arXiv:1906.07052,
2019.

[65] W. Zhang, S. Teng, Z. Zhu, X. Fu, and H. Zhu. An improved least-
laxity-first scheduling algorithm of variable time slice for periodic tasks.
In ICCI, pages 548–553, 2007.

[66] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In CVPR,
2018.

529

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 16,2024 at 18:52:25 UTC from IEEE Xplore. Restrictions apply.

