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As mobile devices become increasingly popular for video streaming, it is crucial to optimize the streaming
experience for these devices. Although deep learning-based video enhancement techniques are gaining
attention, most of them cannot support real-time enhancement on mobile devices. Additionally, many of these
techniques are focused solely on super-resolution and cannot handle partial or complete loss or corruption of
video frames, which is common in the Internet and wireless networks.

To overcome these challenges, we present NERVE, a novel approach in this paper. NERVE consists of (i) a
novel video frame recovery scheme, (ii) a new super-resolution algorithm, and (iii) an enhancement-aware
video bit rate adaptation algorithm. We implement NERVE on an iPhone 12, and it can support 30 frames per
second (FPS). We evaluate NERVE in various networks such as 3G, 4G, 5G, and WiFi networks. Our evaluation
shows that NERVE enables real-time video recovery and enhancement, and results in 24% - 83% increase in
video Quality of Experience (QoE) in our video streaming system.

CCS Concepts: • Information systems → Multimedia streaming; • Computing methodologies →
Computer vision; • Computer systems organization→ Real-time system architecture.

Additional Key Words and Phrases: Mobile video streaming, Video frame recovery, Video enhancement, Bit
rate adaptation
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1 INTRODUCTION

Motivation:Machine learning (ML) has seen tremendous progress and penetrated almost every
aspect of our lives. One of the major applications of ML is to apply it to enhancing video quality. In
particular, videos account for the majority of Internet traffic. However, the Internet bandwidth is
highly fluctuating and hard to predict; when the network condition degrades, the video can get
lost or its sending rate has to decrease. Many ML-based video enhancement approaches have been
developed.
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Existing ML-based video quality enhancement mostly focuses on improving video resolution
given the complete yet lower-resolution video frames. In practice, at the playout time, the receiver
may not have a complete video frame to play either due to excessive delay or packet losses. Many
measurement studies report a widely fluctuating delay in the Internet and wireless networks (e.g.,
[31, 53, 60]). Meanwhile, packet losses are also very common. In a wireline network, losses happen
due to queue drop during network congestion. In a wireless network, in addition to network
congestion and large delay, losses also occur during low signal-to-noise ratio (SNR), collisions, and
handoffs. For example, several measurement studies report some receivers experienced loss rates
above 10% [9, 60]. [31] reports during handoff the average latency increases by 2.26x and loss rates
increase by 2.24x, which significantly degrades video streaming performance. [53] reports the loss
rates of 5G sessions are several-fold higher than 4G sessions. Moreover, adding a large buffer may
prevent packet drop but lead to the bufferbloat problem, which is prevalent in the Internet (e.g.,
[17, 18, 25]), causes excessive delay, and harms video streaming performance.
Packet losses not only reduce the available data rate but also lead to a loss of a complete or

partial video frame. While Forward Error Correction (FEC) and retransmission have been widely
used for loss recovery, their effectiveness is still limited. Retransmission incurs significant delay
and may not be acceptable when round-trip time (RTT) is large. FEC is expensive: as we show in
Section 3, 35% FEC is required to recover 5% packet losses. Meanwhile, ML-based video prediction
can potentially be used to conceal video errors or losses. However, their accuracy is limited since
new content will appear in the next video frame, which makes it hard to predict. Therefore, it is
necessary to develop effective video recovery schemes.

Moreover, various super-resolution (SR) algorithms have been developed to provide good video
quality (e.g., [6, 11, 21, 24, 38, 49, 57]). Yet despite significant research, the existing SR cannot
support real-time execution on mobile devices. Interestingly, video streaming for mobile devices is
becoming increasingly popular. [29] reports that 60%+ U.S. digital video audiences watch videos
using their smartphones. This calls for the development of super-resolution for mobile devices.

In addition, Adaptive Bit Rate (ABR) has been widely used on the Internet to dynamically adjust
the video streaming rate according to the current network conditions. Existing work adjusts the
video bit rate based on what content has been received by the client. As the clients increasingly
adopt advanced video enhancement techniques, it is important to use the enhanced video to drive the
design of ABR algorithms.

Our approach: Inspired by the existing video enhancement and its limitation, in this paper we
present NERVE by developing (i) a video recovery scheme, (ii) a super-resolution method for mobile
devices, and (iii) an enhancement-aware adaptive bit rate algorithm. A nice property of NERVE is
that it works with existing video codecs and is easy to deploy.

More specifically, for (i), we observe that simply predicting videos based on previously received
data is error-prone. If the sender could send some hints about the current videos in a reliable way,
the receiver can use the hints to significantly improve the video prediction. The main challenge
is to determine what hint to provide to optimize the recovered video. We develop a novel way to
extract compact yet essential states from a video sequence and reliably transmit the states (e.g.,
using TCP) for video recovery. Inspired by recent quantized image coding techniques [35, 54],
we exploit temporal localities in the video and employ edge detection to encode a frame into a
very low-resolution binary point code. We find that the learned binary point code encodes both
inter-frame movement information and contour information. Our experiments demonstrate that
with the learned binary point code, the receiver can significantly improve the quality of video
recovery. In our system, we leverage TCP transmission to deliver the binary point code as auxiliary
information to help video recovery. Our video recovery has the following distinct advantages: (i)
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the binary point code is highly compact: within 1 KB, and yet significantly improves the video
quality, (ii) it supports real-time extraction on the server and real-time video recovery on a mobile
device, and (iii) it handles both partial and complete video frame recovery.
For (ii), we also advance the state of the art in video enhancement by developing a novel video

super-resolution model at multiple resolutions. To address the limited computing power and
resources on mobile devices, we use a single neural network for all resolutions and leverage shared
parameters to reduce memory overhead. At the bottom of the network, distinct structures are
designed to accommodate different resolutions and provide the ABR algorithm with the flexibility
to choose different rates. Different from the existing algorithms, it can support (i) different input
video resolutions, (ii) real-time execution on mobile devices (e.g., iPhone 12), and (iii) higher video
quality of super-resolution.
For (iii), in addition to advancing receiver-side video recovery and enhancement, we develop

enhancement-aware video bit rate adaptation. Existing video rate adaptation selects the transmission
video rate to maximize the video quality of experience (QoE), which consists of three major factors:
video quality determined by the video data rate, change in the video quality, and rebuffering time.
The video quality is determined based on the data transmitted to the receiver. Now that the receiver
uses various enhancement techniques to improve the video quality, its actual video quality is likely
to be much higher than the video directly received from the sender. Therefore, a more effective
approach is to use the enhanced video quality to drive the video bit rate decision. We develop
an approach to efficiently estimate the impact of video recovery and SR on the video quality and
rebuffering time, and use the estimation to facilitate bit rate selection.

To understand the benefit of each component in NERVE, we conduct evaluations using QUIC [22]
under a variety of network conditions, including 3G, 4G, 5G, and WiFi networks on iPhone 12.
Since iPhone 12 and higher versions account for more than 94% of the total U.S. iPhone purchases
in Q1 2023, reported in [12], the performance of most users’ smartphones should exceed or be on
par with that of the iPhone 12.

Our major contributions can be summarized as follows:
• Our video recovery approach efficiently extracts binary point code from each video frame to
better support video recovery at the receiver upon partial or complete video frame losses or
excessive delay.

• Our super-resolution method further enhances the resolution of the video frames in real time
on mobile devices.

• Our video bit rate adaptation harnesses the full benefit of video recovery and super-resolution
approaches by using the video QoE after recovery and enhancement for rate adaptation.

• Our evaluation in diverse types of networks shows that NERVE enables real-time recovery and
enhancement and improves the video QoE by 23.7% - 51%, 32.2% - 68%, 37.1% - 83%, and 29% -
72% in 3G, 4G, 5G, and WiFi networks, respectively.
This paper does not involve human subjects and has no ethical concerns.

2 RELATEDWORK

We classify existingwork into the following three areas: (i) video recovery, (ii) video super-resolution,
and (iii) ABR algorithms.
Video recovery: Video recovery methods fall into FEC-based and ML-based categories. FEC
algorithms, used in systems like DASH and Apple HLS, improve video quality over unreliable
networks by adding redundancy to enable lost packet recovery. Popular FEC algorithms include
Reed-Solomon (RS) code [37] for correcting burst errors, Low-Density Parity-Check (LDPC) code
for efficient XOR-based error recovery, and Convolutional code for correcting errors spread across
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multiple bits. The choice of FEC depends on the streaming system’s needs and anticipated network
errors.
Recent advancements in ML for video prediction include convolutional networks (e.g., [2, 47,

48, 50]), recurrent networks (e.g., [46, 59]), and generative networks (GANs), with GANs being
notably effective for generation tasks. Despite their realism in image generation, GANs might not
always accurately predict the next video frame. Other approaches use neural networks for video
error concealment, allowing for the recovery of corrupted frames using information from previous
frames. [40] predicts optical flow from past frames to rebuild damaged sections. [41] employs a
capsule network framework to extract and utilize temporal dependencies along with previous
frames for motion-compensated error concealment.
Video super-resolution: There have been extensive works on designing video super-resolution
(SR) techniques. They leverage previous several video frames to enhance the resolution of the current
frame. BasicVSR [6] uses bidirectional RCNNs for feature propagation and PFNL [57] employs a
non-local sub-network for pixel correlation within and across frames. Deep learning is commonly
applied in motion estimation and compensation (MEMC) methods [11, 21, 24, 38, 49] to improve
SR quality through optical flow estimation. NAS [56] offers scalable SR using desktop GPUs for on-
demand streaming, whereas NEMO [55] adapts SR to mobile devices with real-time capabilities but
requires extensive offline setup. PreSR [61] enhances QoE through selective prefetching but lacks
mobile efficiency and incurs high optimization costs. DeepStream [4] combines bitrate optimization
with a lightweight SR model but still depends on powerful GPUs. In 360-degree video streaming
systems, [8, 13] use SR techniques but do not support general video streaming. Dejavu [15] improves
video conferencing visuals by learning from past sessions, but its offline learning approach limits
its applicability to dynamic video streaming content.
ABR algorithms: In HTTP-based streaming like DASH and Apple HLS, videos are segmented
into chunks lasting 1-10 seconds, encoded at various bitrates. Clients use adaptive bitrate (ABR)
algorithms to select appropriate bitrates for each chunk, considering local buffering and download
time. A variety of ABR algorithms have been developed [3, 16, 19, 26, 43, 58]. Among these
approaches, MPC [58] and Pensieve [26] demonstrate that directly optimizing for the desired
QoE objective delivers better outcomes than heuristics-based approaches. Pensieve employs deep
reinforcement learning to understand the influence of previous decisions on video quality. While
these algorithms adjust for bandwidth fluctuations, they often overlook the effect of client-side video
enhancement. NAS [56] and NEMO [55] consider enhancement impacts but lack comprehensive
algorithms, and streaming DNN models can introduce extra latency without benefiting all chunks.
Unlike these, our method accommodates general video content without video-specific offline DNN
training and incorporates the effects of video recovery and SR into its ABR algorithm.
Summary: NERVE advances the state of the art by (i) introducing a novel video recovery scheme
that uses compact state information of the current frame for more accurate predictions with minimal
overhead; (ii) developing a new video super-resolution method optimized for real-time performance
on mobile devices, overcoming the limitations of existing solutions; (iii) adapting video bit rates to
optimize QoE after applying video recovery and enhancement; and (iv) showcasing its effectiveness
across various network conditions, including 3G, 4G, 5G, and WiFi networks.

3 MOTIVATION

In this section, we conduct controlled experiments to shed light on the limitations of existing FEC,
super-resolution, and video ABR algorithms.
Limitations of FEC: FEC has been widely used for video frame recovery. For example, WebRTC is
a popular technology that supports streaming videos as well as data and voice on both browsers and
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Methods
RLSP[14] BasicVSR[7] CKBG[52] ours

FLOPS(G) 132.94 71.33 17.8 10.8
params(K) 1154 1887 1750 1619
latency(ms) 5000 3500 1000 22

PSNR 28.5 29.8 29.7 27.1
SSIM 0.814 0.853 0.851 0.801

Table 1. Comparison with other SR meth-
ods. FLOPS and latency were validated
on the REDS4[30] dataset using 180*320
resolution as input for 4x up-scaling, pro-
duced on an iPhone 12.

native clients. It uses a hybrid of Negative Acknowledgement (NACK) and FEC for error recovery
during video streaming. When roundtrip time (RTT) is low, NACK is used; otherwise, FEC is used
to avoid excessive delay. We evaluate the benefits of FEC. As shown in Figure 1, 1% packet loss
requires 25% FEC to achieve close to 0 video frame loss. The corresponding numbers for 3% and 5%
packet losses are 30% and 35% FEC, respectively. These numbers show that FEC is very expensive.
Similar observations are reported in [23].

Figure 2 further plots the video QoE under different packet loss rates. Wemake a few observations.
For a given packet loss rate, the video QoE first increases with the redundancy ratio as more packets
are recovered; then it decreases as the extra redundancy only adds overhead. The redundancy
ratio corresponding to the highest QoE is the necessary redundancy required to recover the packet
loss. We observe the required FEC redundancy is 25%, 25%, and 30% for packet loss rates of 1%,
3%, and 5%, respectively. The required FEC redundancy is over 6 times the packet loss rate, which
is rather expensive. These results motivate our work on developing ML-based video recovery.
Combining our video recovery with FEC reduces the required FEC redundancy: the corresponding
redundancy reduces to 15%, 20%, and 25%, while achieving higher peak QoE values of 1.15, 1.11,
and 1.06 respectively. Moreover, as shown in Figure 2, the QoE under 0 FEC redundancy is much
worse than the peak QoE for all curves because removing FEC results in lots of unrecovered losses,
which degrade the video performance under no recovery and reduce the number of video frames
that are available to use as references for our video recovery.
Limitations of existing super-resolution algorithms: Table 1 compares existing SR algorithms
on an iPhone 12 using REDS [30] dataset for Peak Signal to Noise Ratio (PSNR) [34] and Structure
Similiarity (SSIM) [44] metrics, highlighting the need for mobile-optimized ML recovery and SR
due to the slow performance of current methods. NERVE reduces computational demands to enable
real-time performance on mobile devices by using smaller feature maps, efficient feature utilization,
and optimized warping. We achieve efficiency by leveraging low-resolution binary point code
(64×128), which maintains video quality while simplifying future frame prediction and significantly
cutting latency.

4 VIDEO RECOVERY

In this section, we present a deep neural network-based video recovery model for clients to recover
videos whenever video frames get lost. This significantly enhances the resilience of video streaming
under diverse network conditions. Note that there have been considerable works on video prediction,
which predicts the next video frame based on previous frames and can be applied to recover lost
videos in our context. However, predicting solely based on the previous information has limited
accuracy whenever the video frame has new content, which is common in reality. Our main idea is
to send some hints about the next video frame along with the encoded video to facilitate video
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recovery. We design a lightweight mechanism to extract a compact hint for recovering the next
video frame and show it can significantly enhance the quality of the recovered videos. Below we
describe (i) how to extract the compact binary code at video servers and (ii) how to leverage the
code for video recovery at clients.
Extracting binary point code: To extract meaningful information from a video frame to help
the video recovery, our encoder borrows the concept of edge detection to preserve the contours
of objects. We adopt PidiNET[45] trained on BSDS500[5] as an edge encoder due to its stable
performance and small inference overhead. The result of edge detection is usually a value between
0 and 1, so we binarize it to form a binary point code. The resolution of this binary point code can
be very low. We find that even a 64 × 128 code (only 1 KB) can significantly improve the quality of
the video recovery. We use TCP to reliably transmit it at a low cost.
We train the encoder end-to-end with the decoder for better recovery performance. We use a

binarization layer in Movement Pruning [39]. To ensure the encoder-decoder structure is differ-
entiable, we skip the gradient from binarization, which directly passes the gradient before the
quantization layer to the upper layer.

Figure 6 illustrates the learned binary point code. It captures the motion and contour information
of the current video frame. Despite its small size, it significantly improves the prediction accuracy.
Leveraging binary point code: The client recovers the current frame based on the current binary
point code, previous video frames, and optionally a portion of the current frame that is received
correctly.

a) Video prediction module architecture diagram 

b) Video super resolution module architecture diagram 
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Fig. 3. Model architecture. The blue portion shows the server side operation and the yellow portion shows
the client side. 𝐼𝑡 and 𝐼𝑡−1 are the video frames of the current time step 𝑡 and the previous 𝑡 − 1. 𝐻𝑒 is the
history state maintained by the server-side encoder and 𝐻 is the history state maintained by the decoder.
𝐶 is the binary point code generated by the server, which is transmitted to the client to help with video
recovery. 𝐼𝑡𝑝𝑎𝑟𝑡 is the partially decoded image when the transmission fails. 𝑂 is the current optical flow. 𝐼𝑡240,
𝐼𝑡360, 𝐼

𝑡
480 and 𝐼

𝑡
720 are different resolutions of video frames downsampled from 𝐼𝑡 . 𝐼𝑡

𝐿𝑅
is the input frame of the

super-resolution network received from the server, which is one of the four resolutions mentioned before,
and will choose its corresponding upsampling structure to generate high-resolution prediction �̂�𝑡

𝐻𝑅
.

Our video recovery approach consists of the following steps: (i) estimating the optical flow
between two consecutive binary point codes, (ii) upsampling the optical flow to the resolution of
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the video frame, and warping the previous video frame to the current one using the optical flow, (iii)
further enhancing the content that is warped from the previous frame, and also using inpainting to
generate new content that does not appear in the previous frames.

For (i), we use SpyNet [36], an efficient optical flow network, to derive the delta between the two
binary codes. Different from SpyNet, we fine-tune the optical flow network end-to-end to warp the
previous frame to match the current frame.
For (ii), we find that warping on the iPhone 12 is very slow. We improve its speed by changing

the warping resolution to 270p, which reduces the warping time to within 5 ms.
For (iii), we improve the content in warped regions based on the difference to the ground truth.

Meanwhile, we observe that warp-based video frame prediction predicts the movement of the
content that already exists in the previous video frames. We further use the binary point code from
the current video frame to generate new content by upsampling it to the video frame size and using
an inpainting module to generate the content in the region that is left empty after warping. It then
concatenates the two prediction results to produce the final video frame. We use the Charbonnier
loss [6], a widely used loss function for generation tasks, as the optimization metric during training.

To support partial error concealment, we introduce 𝐼𝑝𝑎𝑟𝑡 as an additional input. 𝐼𝑝𝑎𝑟𝑡 is a partially
decoded video frame due to packet loss, and it is a valuable input for recovering the missing part.
We feed it to the recovery model to utilize this partial information, and partial content is also
used to override the predicted �̂�𝑝𝑟𝑒𝑑 in the corresponding region. Refer to Figure 9 for 𝐼𝑝𝑎𝑟𝑡 and the
recovery results for the missing region.
Recovery model implementation details: Figure 3(a) shows the overall framework of our video
recovery. The server transmits the binary point code to the client to help with video prediction.
To improve computational efficiency, all inputs to the optical flow network are downsampled to
64×128. Outside the optical flow network, we resize the output to 270×480 and feed it to subsequent
convolution layers. We use PixelShuffle [42] to upsample by 4x to produce 1080p output. Since
warping operation on a mobile device is too costly, we resize the 1080p 𝐼 𝑡−1 frame to 270p resolution
and then perform warping to generate �̂� 𝑡𝑤𝑎𝑟𝑝 . However, it is hard to avoid information loss due to
downsampling, so this degradation needs to be compensated by the enhancement module. So we
additionally feed the 270p 𝐼 𝑡−1 into extra convolution layers to compensate for the loss.

Our video recovery model is trained end-to-end.𝐻𝑒 and𝐻 are two hidden layer states maintained
at the server and client, respectively. 𝐻𝑒 is responsible for capturing the temporal information
during the encoding of the binary point code at the server, while𝐻 records the temporal information
associated with the video recovery process based on the binary point code at the client. During the
training phase, at each time step, both 𝐻𝑒 and 𝐻 serve as differentiable information medium that
can select valuable features from the historical frames for predicting the current frame. We select a
set of feature maps from the output of the optical flow network and apply two groups of convolution
layers with non-shared parameters. This results in two intermediate predictions: �̂�𝑖𝑛𝑝𝑎𝑖𝑛𝑡 and �̂�𝑒𝑛ℎ𝑎𝑛𝑐𝑒 .
The former focuses on filling the gaps in �̂�𝑤𝑎𝑟𝑝 created by the warping process (where the newly
emerged content cannot be matched by the optical flow), while the latter concentrates on further
adjusting �̂�𝑤𝑎𝑟𝑝 . Warping is only based on moving pixels from historical content, while �̂�𝑒𝑛ℎ𝑎𝑛𝑐𝑒
predicts more subtle changes, such as variations in light or shadow.
Joint FEC and video recovery: So far, we have focused on designing a video recovery model.
In practice, one can use both FEC and video recovery to cope with network losses and excessive
delay. As shown in Figure 2, the best QoE performance is achieved when we add an appropriate
amount of FEC. To determine the right amount of FEC to add to our video recovery, we take five
different videos from each category on YouTube (described in Section 8.1) and play them under
different network loss rates, where a loss means the packet is either lost or not received in time. For
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each network loss rate, we apply different levels of FEC and perform video decoding and recovery
as described above. We derive the resulting QoE and select the FEC that yields the highest QoE.
In this way, we offline build a lookup table that specifies the best FEC level for each loss rate.
During online running, we do not assume perfect packet loss rate prediction. Rather, we predict the
packet loss rate using Exponential Weighted Moving Average (EWMA): 𝐿𝑐𝑢𝑟𝑟 = 𝛼𝐿𝑝𝑟𝑒𝑣 + (1 − 𝛼)𝐿,
where 𝛼 = 0.3 in our evaluation. We determine an appropriate FEC redundancy ratio based on the
predicted loss rate. A similar approach can be applied to support other recovery methods.

5 VIDEO ENHANCEMENT

We develop a DNN for video enhancement in real time. As shown in Section 3, existing super-
resolution methods are either too slow or not accurate. Our SR can achieve good accuracy on
mobile devices (e.g., iPhone 12) at 30ms per frame.
Figure 3(b) shows our enhancement process. The network structure of our SR and recovery

models are similar. Both are based on an optical flow network to align features, and then use
upsampling modules to generate higher-resolution frames. To support streaming at different bit
rates, the server will resize the video into different resolutions and transmit the resolution requested
by the client as the I𝑡

𝐿𝑅
. On the client side, the optical flow network computes the pixel shifting

between I𝑡
𝐿𝑅

and I𝑡−1
𝐿𝑅

. To save memory, SR models with different up-scaling factors share the same
optical flow network. To support super-resolution at different resolutions, we use independent
convolution layers to learn different degradation patterns. The learning target of our SR model is
the gap between the bilinear upsampled I𝑡

𝐿𝑅
and the ground truth I𝑡 . As with the recovery model,

we use Charbonnier loss to optimize the above target, and the SR tasks using different up-scaling
factors are trained simultaneously.
Our SR model stands out due to its unique properties, such as real-time execution on mobile

devices and support for multiple input resolutions. This is achieved through an efficient design
that incorporates a shared optical flow network for different up-scaling factors and independent
convolution layers tailored to specific degradation patterns. Furthermore, our model provides
up-sampling for different resolutions without incurring additional computational costs by resizing
the feature maps to predict degradation at various resolutions. This innovative approach allows
our model to effectively accommodate devices with diverse computational capabilities, ensuring
an optimized video streaming experience across a wide range of devices under various network
conditions.

6 ENHANCEMENT-AWARE ABR

We develop an enhancement-aware ABR algorithm. It is built on the ABR in Pensieve [26], but
advances Pensieve in two respects: (i) it is an enhancement-aware ABR, which considers the impact
of video recovery and super-resolution, and (ii) it incorporates the latest Reinforcement Learning
(RL) algorithm – Proximal Policy Optimization (PPO) [33]. Below we focus on how to model the
impact of video recovery and super-resolution on video QoE and refer the readers to [33] for
detailed descriptions of PPO.
Quality of Experience (QoE): The widely used video Quality of Experience (QoE) is a function of
bitrate utility, rebuffering time, and smoothness of selected bitrates, which is defined as follows:∑𝑁

𝑛=1 𝑅𝑛 − 𝜇
∑𝑁

𝑛=1𝑇𝑛 −∑𝑁−1
𝑛=1 |𝑅𝑛+1 − 𝑅𝑛 |

𝑁

where 𝑁 is the number of video chunks, 𝑅𝑛 and 𝑇𝑛 represent the video chunk 𝑛’s bitrate and
rebuffering time resulting from its download, respectively, and 𝜇 is the rebuffering penalty. Video
recovery and super-resolution impact the QoE in two ways: (1) they improve the video quality and
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its corresponding bitrate and (2) their running time also affects the rebuffering time. Below we
compute (i) how video recovery affects the video quality, (ii) how SR affects the video quality, (iii)
how video recovery affects rebuffering time, and (iv) how SR affects rebuffering time.

Impact of video recovery on video quality: Let us first consider how video recovery affects the
video quality. The impact can be quantified based on how many video frames go through video
recovery and how much video quality changes after recovery. First, we estimate the number of
video frames in the current video chuck that need recovery. We observe that recovery takes place
when either (i) a video frame is lost (e.g., due to network congestion, low SNR, mobility) or (ii) a
video frame arrives too late (i.e., the frame has not arrived by the time the video frame is scheduled
to play). We can predict the loss rate (e.g., using Exponential Weighted Moving window Average
(EWMA) or Holt-Winters (HW)), and use the predicted loss rate to estimate (i). To estimate (ii), we
compute the expected play time for the 𝑖-th video frame as 𝑇𝑝𝑙𝑎𝑦 = 𝑇𝑝𝑟𝑒𝑣 + 𝑖Δ, where 𝑇𝑝𝑟𝑒𝑣 is the
end time of the previous video chuck, 𝑖 is the video frame index, and Δ is the inter-frame time. We
compute the expected arrival time for the 𝑖-th frame as𝑇𝑎𝑟𝑟 = 𝑇𝑝𝑟𝑒𝑣 +

∑
𝑖 𝑆𝑖/𝑡𝑝𝑢𝑡𝑐𝑢𝑟𝑟 , where 𝑆𝑖 is the

total size of data for the 𝑖-th frame and 𝑡𝑝𝑢𝑡𝑐𝑢𝑟𝑟 is the predicted throughput for the current video
chuck, which can be derived using EWMA or HW. Then for every video frame 𝑖 in the current
chuck, we count the number of frames whose 𝑇 𝑖

𝑝𝑙𝑎𝑦
< 𝑇 𝑖

𝑎𝑟𝑟 .
Next, we need to compute the video quality for the recovered frame. This depends on the selected

video bit rate. For simplicity, we first take videos from the top ten popular categories [27] on
YouTube; for each bit rate, we then compute the average PSNR of these video frames after applying
video recovery. We use this value as an estimation for the video quality. For the remaining videos
that do not need recovery, we can estimate the video quality based on the selected bit rate (i.e.,
computing the average PSNR of the video frames at that rate).

Impact of SR on video quality: The impact of SR can also be quantified based on (i) the number
of video frames that go through SR and (ii) the enhanced video quality after applying SR. (ii) can be
estimated by computing PSNR of the video frames after applying SR at each bit rate. Below we
compute (i). Since rebuffering time is more annoying than degraded video quality, we skip SR if SR
can cause rebuffering. Therefore video frames can be grouped into the following three scenarios: 1)
those that are not received in time for playout and require recovery, 2) those that are received in
time and can be applied with SR before the playout time, and 3) those that are received in time but
cannot finish SR before the playout time. To derive 2), for every video frame 𝑖 in the current chuck,
we count the number of frames whose 𝑇 𝑖

𝑝𝑙𝑎𝑦
> 𝑇 𝑖

𝑎𝑟𝑟 +𝑇𝑆𝑅 , where 𝑇𝑆𝑅 is the processing time of SR.

Impact of video recovery on rebuffering time: To quantify the video recovery on the rebuffering
time, we observe that only the frames that go through recovery have rebuffering time. These frames
can be recovered either when they are received successfully but late or corrupted due to network
losses. Therefore, their rebuffering time can be estimated as𝑚𝑖𝑛(∑𝑖 𝑆𝑖/𝑡𝑝𝑢𝑡𝑐𝑢𝑟𝑟 −𝑇 𝑖

𝑝𝑙𝑎𝑦
,𝑇𝑅𝐶 ), where

𝑇𝑅𝐶 is the recovery time.

Impact of SR on rebuffering time: As mentioned earlier, to minimize rebuffering time, only
the frames that can finish SR before their playout time will go through SR. Therefore, SR does not
affect rebuffering time.

Bit rate selection: Our final ABR algorithm computes the QoE of the current video chuck for each
video bit rate and selects the rate that leads to the highest QoE.

7 SYSTEM IMPLEMENTATION

We implement and deploy NERVE in a video streaming system, shown in Figure 4.
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Fig. 4. Overview of our system architecture with NERVE.

Server: The video server encodes videos using standard video codecs like VP9, H264, or H265,
and transmits binary point codes to the client via TCP while streaming video content through
QUIC [22]. QUIC, favored by platforms like YouTube and Instagram for its efficiency, offers quicker
connection setup and faster retransmission than TCP. Google noted QUIC cuts Google search
latency by over 2% and YouTube rebuffering time by 9% [10]. Despite its advantages, even with fast
retransmission, QUIC experiences a 1.6% packet loss in 5G networks.
Client: The client uses the enhancement-aware ABR algorithm to select and request video bit rates
from the server, decodes video frames as usual, and applies the super-resolution (SR) method to
enhance resolution before buffering. Incomplete frames are recovered using our video recovery
method before playback. We use an iPhone 12 as the mobile client in this paper.
Model deployment: To enhance videos on mobile devices, we deploy our SR and recovery models
using CoreML for optimized iOS performance across CPU, GPU, and Neural Engine. Our CoreML
model outperforms ONNX, PyTorch Mobile, and TensorFlow Lite in speed. Addressing the slow
grid sample operation due to the lack of GPU support, we utilize Metal Performance Shaders (MPS)
for a custom, GPU-accelerated layer. By warping at 270p instead of 1080p, warping time decreases
from 29𝑚𝑠 to 5𝑚𝑠 on the iPhone 12. Utilizing FP16 precision for inputs and weights, we achieve a
total inference time of 22𝑚𝑠 without performance degradation.

8 EVALUATION

In this section, we first present our evaluation methodology and then describe performance results.

8.1 Evaluation Methodology

Network traces: We collect network traces from 3G, 4G, 5G, and WiFi networks via QUIC for
evaluation, using Chrome’s net-export [32] for QUIC packet data while watching YouTube videos,
and identifying packet loss through the number of retransmitted packets due to loss detection and
probe timeout from QUIC logs. Downlink throughput is also measured with iPerf between an Azure
server in the central U.S. and a local client. The measurement includes static and walking scenarios
for mobile networks and introduces mobility to WiFi traces by moving the client randomly.
Video datasets: For our evaluation, we utilize the video dataset from NEMO [55]. We choose
videos from the top ten popular categories [27] on YouTube: ’Product review’, ’How-to’, ’Vlogs’,
’Game play’, ’Skit’, ’Haul’, ’Challenges’, ’Favorite’, ’Education’, and ’Unboxing’. From each category,
we select five videos from distinct creators that support 4K at 30fps and are at least 5 minutes long.
Then, four of them are allocated to training and the remaining one is used for testing. We transcode
them into multiple bit rates ({512, 1024, 1600, 2640, 4400}kbps) at resolutions ({240, 360, 480, 720,
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3G 4G 5G WiFi

Amount 45 62 53 68
Avg. Duration (s) 322 317 302 309

Avg. Throughput (Mbps) 7.5 21.6 36.4 82.3
Avg. Packet loss rate (%) 0.9 1.3 1.6 0.5

Table 2. Network traces 5 10 20 50
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Fig. 5. Performance results of video prediction.

1080}p) using the VP9 codec, following Wowza’s guidelines [51], with a GOP size of 120 frames (4
sec).
Performance metrics:We measure the video quality using SSIM and PSNR metrics, where higher
values signify better quality. System performance is quantified by QoE. A higher QoE indicates
better streaming experience.
Training details:We use 500,000 iterations for all training rounds. We use an 8 GPU Tesla V100
machine with a batch size of 16. We set the learning rate to 1𝑒−5, and use the cosine decay.

8.2 DNN Performance

First, we evaluate the DNN performance in terms of video quality.
DNN performance of video recovery: Figure 5 compares the video quality of (i) simply reusing
the previous video frame, (ii) predicting without the binary point code, (iii) predicting using NERVE
with the binary point code, and (iv) predicting using ECFVI [20], a state-of-the-art flow-guided
video inpainting model. In (ii), we use the last two consecutive frames to replace the binary point
code input in Figure 3. In (iv), ECFVI recovers video frames at 240p resolution. To support a high
resolution, we add extra convolutional layers and introduce a pixel shuffle layer to ECFVI to output
1080p video frames. We apply CoreML optimization to ECFVI and test it on an Apple MacBook Air
because its large memory requirement precludes its use on an iPhone 12. Running an inference on
ECFVI takes 6𝑠 on the MacBook Air, while our model takes only 18𝑚𝑠 .

We use these schemes to predict the next 5, 10, 20, and 50 frames and calculate the average video
quality. Our findings reveal that video recovery without binary point code improves PSNR by 4-9dB
and SSIM by 0.03-0.13 over frame reuse. NERVE further enhances PSNR by 6-12dB and SSIM by
0.04-0.17 by incorporating binary point code, demonstrating its efficacy. NERVE also outperforms
ECFVI, a much larger model, in both efficiency and accuracy. It improves PSNR by 0.3-1.2dB and
improves SSIM by 0.005-0.014. Moreover, as we increase the number of future frames to predict, the
prediction quality using our recovery model degrades more gracefully than the other schemes for a
similar reason. Figure 6 visualizes our video recovery results, demonstrating our model’s ability
to learn motions between consecutive frames, with recovered frames closely resembling ground
truth. Despite significant differences between consecutive frames, the model generates accurate
predictions even in areas without references.

Figure 7 shows partial video recovery performance in a WiFi network, where partially corrupted
frames are recovered. Without binary point code, our recovery model improves PSNR by 0.6-5dB
and SSIM by 0.01-0.04 compared to reusing previous frames. NERVE further increases PSNR by
4-8.5dB and SSIM by 0.04-0.06 by incorporating binary point code. NERVE outperforms ECFVI by
0.05-0.75dB in PSNR and 0.004-0.008 in SSIM. The benefit of NERVE over ECFVI is reduced because
partial recovery decreases the error and the room for improvement. Moreover, the performance gap
widens for our video recovery without binary point code versus reusing previous frames, as 𝐼𝑝𝑎𝑟𝑡
gives the network precise clues for current frame content inference. Similarly, NERVE outperforms
other algorithms by a larger margin than shown in Figure 5, due to a stronger learned association
between RGB content and binary point code in decoded areas, enhancing prediction in missing
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Fig. 6. Visualization of video recovery results. Cases are sampled from REDS4[30].
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Fig. 7. Performance results of video partial recovery.
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Fig. 8. Performance results of video super-resolution.

sections. Figure 9 plots our error concealment results, showing recovered frames closely resembling
the originals, highlighting NERVE’s effectiveness in handling both completely lost and partially
corrupted frames.

Corrupted Frame Recovery PredictionGround Truth

Fig. 9. Visualization of video concealment results. Cases are sampled from REDS4[30].

DNN performance of video super-resolution: Figure 8 shows that our super-resolution (SR)
model outperforms Mobile RRN [28] and upsampling on mobile devices. With CoreML optimization,
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our SR achieves a 22𝑚𝑠 inference time on an iPhone 12, faster than Mobile RRN’s 28𝑚𝑠 . NERVE
outperforms Mobile RRN in PSNR by 0.4-0.59dB and in SSIM by 0.003-0.006 across 240p to 720p
resolutions. Compared to upsampling, NERVE shows greater improvements in PSNR (1-1.3dB) and
SSIM (0.007-0.015). Lower-resolution videos yield a higher improvement, as expected. Figure 10
visualizes these super-resolution results, demonstrating our SR’s benefit across various resolutions.

720P/38.9dB480P/36.2dB320P/34.7dB240P/28.6dB

720P/33.6dB480P/32.4dB320P/29.7dB240P/26.7dB

Bicubic

SR

Res/PSNR

Res/PSNR 720P/31.3dB480P/30.3dB320P/28.2dB240P/25.8dB

720P/34.1dB480P/32.1dB320P/30.9dB240P/27.2dB

GT

Fig. 10. Visualization of video super-resolution results. Two examples are shown to demonstrate that our
super-resolution model achieves significant results at four different scales of video super-resolution.

8.3 System Performance

In this section, we evaluate the system performance in terms of video QoE. Note that we downscale
the throughput for all network traces so that their throughput falls into the range between the
highest and lowest video bit rates. The average downscaled throughput across all the network
traces is around 1-2Mbps.
QoE performance of video recovery: To evaluate the QoE performance of video recovery, we
consider three schemes: (i) without recovery model, (ii) RC clone: without recovery-aware ABR,
and (iii) NERVE without enabling super-resolution. Note that (ii) means we still perform video
recovery for lost or late frames but select the bit rate without taking into account the benefits and
cost of video recovery. Figure 11 shows that video recovery alone boosts QoE by 6.3%-14.2% across
3G to WiFi networks due to reduced rebuffering times. Our recovery-aware ABR further enhances
QoE by 2.2%-7.5% over recovery alone because it is aware of the usage of recovery for the next
frames such that the bit rate can be chosen more wisely to maximize the system QoE. Notably, 5G
enjoys the largest improvement because more frames require video recovery as we will show next.
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Fig. 11. Qoe of Recovery-only schemes across different
network traces.

3G 4G 5G WiFi

w/o RC -0.88 -9.24 -11.86 -1.99
RC alone 0.1 -0.48 -1.21 -0.16
NERVE 0.4 0.07 0.19 0.11

Table 3. QoE of recovered frames

Figure 12(a) illustrates the variability in average throughput across network types, with 5G
showing significant fluctuations. Figure 12(b) reveals a high percentage of frames requiring recovery
in 5G due to these fluctuations, and even 4G and WiFi networks have around 10% of frames
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Fig. 12. Analysis of the QoE performance of video re-
covery.
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Fig. 14. Qoe of Recovery-only schemes across differ-
ent network traces.
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Fig. 15. QoE of Recovery-only schemes with and with-
out FEC under different network traces.

requiring recovery, underscoring the importance of video recovery in unstable network conditions.
Figure 13(a) and 13(b) further show a sample time series of throughput and QoE, indicating that QoE
suffers greatly without recovery during throughput variations. Recovery alone has a more stable
QoE but sometimes gets below 0 due to the rebuffering overhead. Our approach always chooses the
bit rate that yields the best QoE. Table 3 shows that video recovery alone boosts QoE for recovered
frames by 1.26-10.65, primarily due to decreased rebuffering times. Adding recovery-aware ABR
further improves QoE by 0.25-1.4.
QoE performance without FEC under lossy networks: Figure 14 shows the QoE performance
of recovery-only schemes across different network traces. Under this setting, we do not enable FEC
for loss recovery. For (i), we reuse the last frame when a video frame is late or lost. For (ii) and (iii),
our recovery model recovers these frames. In a lossy network, video recovery alone boosts QoE
by 58.9%-82.7% across 3G to WiFi networks. NERVE further enhances QoE by 71.8%-110% over
without recovery and by 8%-14.6% over recovery alone, highlighting significant improvements,
particularly in lossy networks where reusing frames falls short. However, our recovery model can
recover many frames with little degradation so its QoE performance is much better.
QoE performance with FEC under lossy networks: Initially excluding FEC, we then jointly
optimize FEC and video recovery. Figure 15 compares a baseline without FEC to versions with
FEC, where the amount of FEC is determined based on our lookup table. We offline build separate
lookup tables that map the packet loss rates to desired FEC levels for different schemes. Our joint
optimization enhances performance significantly: 51%-83% over no recovery and 13%-48% over
recovery alone across 3G to WiFi networks. It also outperforms the no FEC scenario by 1.2-1.3 in
QoE. These results show that (i) FEC plays an important role under lossy network conditions, (ii)
the desired amount of FEC depends on the recovery and ABR algorithm, and (iii) each component
in NERVE is beneficial.
QoE performance of video super-resolution: Figure 16 compares the QoE of NERVE without
enabling recovery with (i) without SR, (ii) SR alone using our model, and (iii) NEMO [55]. NERVE
significantly outperforms (i), (ii), and (iii) in QoE: it achieves improvements of 18%-22% over (i),
4.5%-7.1% over (ii), and 0.7%-4.5% over (iii) across 3G, 4G, 5G, and WiFi networks. SR alone improves
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Fig. 16. Qoe of SR-only schemes across different net-
work traces.
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Fig. 17. Qoe of Recovery & SR schemes across differ-
ent network traces.

QoE by 12%-14%, and SR-aware ABR adds an extra 4%-7% gain, underscoring the value of integrating
ABR and SR in NERVE’s design.
QoE performance of video recovery and super-resolution: Figure 17 compares the QoE of (i)
without SR or recovery, (ii) SR and recovery alone, (iii) NEMO, and (iv) NERVE. NERVE significantly
outperforms the alternatives in QoE across 3G, 4G, 5G, and WiFi networks by large margins:
23.7%-37.1% over no SR/recovery, 5.9%-11.9% over SR/recovery alone, and 4.7%-17.4% over NEMO.
This demonstrates the substantial impact of both SR and recovery, especially when combined with
our enhancement-aware ABR strategy, leading to the highest performance gain. NEMO relies on
reusing frames and performs better than other baselines in 3G due to fewer lost/late frames, while
NERVE outperforms NEMO by leveraging video recovery and SR across all networks.
Performance of individual components: NERVE enhances QoE greatly by combining video
recovery, super-resolution, and FEC. Figure 14 shows that QoEs for 3G, 4G, 5G, and WiFi networks
are improved from 0.2-0.24 to 0.36-0.51 by only adding video recovery. Then, adding FEC improves
these QoE scores to 0.9-1.24 by improving frame recovery accuracy, shown in Figure 15. As seen
in Figure 17, further incorporating SR boosts QoE to 1.5-1.71, demonstrating the strong impact of
each component in NERVE on improving video quality across different networks.
8.4 System Latency and Resource Usage
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Fig. 18. Analysis of the latency of binary code when the initial buffer size is set to 1 second. (a) Percentage of
late and lost video frames. (b) CDF of the time margin (i.e.,𝑀) of binary code for all lost and late frames.

3G 4G 5G WiFi
Network Type

10

20

P
e
rc

e
n
ta

g
e
 (

%
)

(a)

Lost frames

Late frames

0 2 4
Time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F

(b)

3G

4G

5G

WiFi

Fig. 19. Analysis of the latency of binary code when the initial buffer size is set to 0.25 seconds. (a) Percentage
of late and lost video frames. (b) CDF of the time margin (i.e.,𝑀) of binary code for all lost and late frames.

Latency of binary code: The binary code aids video recovery only when its received time plus the
inference time is before the deadline (i.e.,𝑀 = 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 − 𝑖𝑛𝑓 𝑒𝑟𝑇𝑖𝑚𝑒 − 𝑏𝑖𝑛𝑎𝑟𝑦𝑅𝑥𝑇𝑖𝑚𝑒 ≥ 0), where
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the deadline denotes the video frame playout time, 𝑖𝑛𝑓 𝑒𝑟𝑇𝑖𝑚𝑒 is the time to run our video recovery
model, 𝑏𝑖𝑛𝑎𝑟𝑦𝑅𝑥𝑇𝑖𝑚𝑒 is the received time of our binary code. Note that the frame playout time is
the initial client buffer size plus the inter-frame spacing (i.e., 33𝑚𝑠 for 30FPS videos). If UDP packets
are retransmitted and decoded in time (i.e., 𝑁 = 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 − 𝑑𝑒𝑐𝑜𝑑𝑒𝑇𝑖𝑚𝑒 − 𝑓 𝑟𝑎𝑚𝑒𝑅𝑥𝑇𝑖𝑚𝑒 ≥ 0), the
binary code becomes redundant. We set up a video streaming session from an Azure server to an
iPhone 12 over 3G, 4G, 5G, and WiFi networks, using NERVE without FEC and SR to recover lost
or late frames. The binary code is transmitted over TCP whereas the video data is transmitted over
QUIC [1] with built-in retransmission. Across 20 trials per network under both static and walking
scenarios, average throughputs are 6.9, 22.3, 34.5, and 78.4 Mbps, respectively.

We first set the initial buffer size to 1𝑠 . Figure 18(a) shows 1.0%, 0.8%, 0.7%, 0.5% late frames and
4.2%, 7.7%, 9.1%, 3.6% lost frames for 3G, 4G, 5G, and WiFi networks, respectively. Figure 18(b) plots
the CDF of𝑀 for all lost and late frames.𝑀 is consistently above zero, while video packet loss still
happens with QUIC retransmission. The binary code (only 1KB) has a much smaller transmission
time and is more reliable. We further reduce the buffer size to 0.25𝑠 to understand the impact of
buffer size on the latency constraint. As shown in Figure 19(a) and (b), the percentage of late frames
is increased to 9.4%, 8%, 6.1%, and 1.7%, and the percentage of 𝑀 < 0 is 0.9%, 0.3%, 0.2%, and 0%
for 3G, 4G, 5G, and WiFi networks, respectively. Even though a small percentage of binary code
misses the deadline, it is substantially lower than the percentage of lost and late video frames.
These results show that even under tight latency constraints, most binary code sent over TCP can
still be received in time to help with video recovery.
If the binary code cannot arrive before the deadline, we have the option to recover the frame

without the binary code by warping the optical flow estimated using the previous two frames. As
described in Sec. 8.2, without binary code, frame recovery using optical flow from two previous
frames is less effective than with the binary code but still improves quality significantly with only
22𝑚𝑠 inference time on iPhone 12.

System latency:When initiating video streaming, we establish TCP and QUIC sessions. Given
that the decoding and model inference can occur simultaneously with the receiving process of
subsequent frames, the total latency can be viewed as the sum of the decoding time and the duration
required for video enhancement or recovery. The decoding time of 240p, 360p, 480p, 720p, and
1080p videos are 1.8𝑚𝑠 , 2.3𝑚𝑠 , 2.9𝑚𝑠 , 4.1𝑚𝑠 , and 6.2𝑚𝑠 on the iPhone 12, respectively. Our model
adds 22𝑚𝑠 for both enhancement and recovery, regardless of the video resolution. This results in a
total latency of under 33𝑚𝑠 , demonstrating real-time processing capability in our system.

CPU usage and energy consumption: We analyze CPU usage and energy consumption with
our recovery and enhancement models. They share a similar model structure and exhibit identical
inference time, which implies comparable CPU usage and energy consumption. On an iPhone 12,
without DNN processing, CPU utilization is 28% with 0.04J energy per frame. This increases to 37%
and 0.05J with 20% frame loss, and 68% and 0.07J with complete frame loss. If every frame goes
through recovery or enhancement, the battery life decreases from 13.2 hours to 7.5 hours. The
energy consumption can be reduced by optimization techniques, such as quantization and pruning.

9 CONCLUSION

As mobile video streaming becomes increasingly popular, we present NERVE which consists of
a video recovery model, a video super-resolution model, and an enhancement-aware bit rate
adaptation algorithm. We implement NERVE on an iPhone 12 in a video streaming system and
enable real-time neural video recovery and enhancement. Our extensive evaluation shows that
NERVE yields significant improvements over other schemes in 3G, 4G, 5G, and WiFi networks.
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