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Abstract—The popularity of 4K videos is on the rise. However,
streaming such high-quality videos over mmWave to several users
presents significant challenges due to directional communication,
fluctuating channels, and high bandwidth demands. To address
these challenges, this paper introduces an innovative 4K layered
video multicast streaming system. We (i) develop a video quality
model tailored for layered video coding, (ii) optimize resource
allocation, scheduling, and beamforming based on the channel
conditions of different users, and (iii) design a streaming strategy
that integrates fountain code to eliminate redundancy in multicast
groups, coupled with a Leaky-Bucket approach for congestion
control. We implement our system on Commodity-Off-The-Shelf
(COTS) WiGig devices and demonstrate its effectiveness through
comprehensive testbed and emulation experiments.

Index Terms—Video streaming, Millimeter-wave, Multicast,
Layered coding

I. INTRODUCTION

With affordable Ultra-High-Definition (UHD) displays com-

ing out and 4K content becoming widely available, 4K video

streaming has gained tremendous popularity in recent years. A

4K video frame has 3840x2160 pixels, which is 4× resolution

of standard full-high-definition (FHD) pictures. This yields

several significant benefits: (i) 4K videos render finer details

on the screen and allow users to see farther by improving the

image depth [1]. (ii) more pixels blend colors more naturally

and objects more realistically. These improvements contribute

to immersive user experience, which is critical for Virtual

Reality (VR) and Augmented Reality (AR) gaming.

The huge benefits of 4K videos have motivated researchers

to develop innovative solutions to improve 4K video rendering,

compression, and streaming. However, most of the current

works focus on single-user scenarios. Delivering 4K content

to multiple users remains less-studied though we observe

an increasing need for 4K video multicasting. Live sports,

concerts, conferences, and gaming all require video streaming

to multiple users simultaneously. For example, in VR/AR

gaming or film-watching, multiple users gather at the same

place and the game/content server renders and distributes

the videos to User Stations (STAs). To reduce latency, the

game/content servers may be close to or even co-located with

the base station or WiFi Access Point (AP) [2, 3].

The above scenarios motivate us to explore efficient ways

to transmit videos from a base station or AP to multiple

users. It is well-known that real-time 4K gaming and stream-

ing are demanding tasks. Supporting 30 Frames Per Second

(FPS) means performing encoding, transmission, and decoding

within 33 ms, even without considering rendering cost. Given

such a challenge, millimeter-wave (mmWave) communication

is appealing since its ultra-wide bandwidth enables a 10 Gbps-

level capability [4] and there are Commodity-Off-The-Shelf

(COTS) WiGig 60 GHz devices. However, realizing a live 4K

video multicast system faces several significant challenges as

follows.

Challenges: First, users having different Signal-to-Noise Ra-

tios (SNRs) are likely to receive different amounts of data. This

disparity becomes even more severe in mmWave scenarios

due to the rapid signal attenuation over the distance and the

adoption of directional communication. DASH [5], a standard

unicast protocol for video streaming over the Internet, divides

a video into chunks encoded in multiple bitrates. Each client

adapts its bitrate for video chunks according to the network

condition. Directly applying DASH to multicast would signif-

icantly limit the sharing across users since only users of the

same bitrate can share the content.

Second, mmWave suffers from large throughput fluctua-

tions due to mobility at the receiver or environment [4, 6],

which are hard to predict and cause significant performance

degradation in video streaming (e.g., unable to transmit the

frames at the selected data rates, hence decoding errors). We

seek an approach that swiftly adapts to the dynamic channel

conditions and gracefully compromises the performance when

the network condition degrades.

Third, the video quality highly depends on the transmission

strategy, i.e., how to schedule video resources and transmission

schedules to optimize video quality across multiple users with

different channel conditions. The first thing that matters is to

build a utility function that accurately translates the amount of

received content to the video quality. The function should be

tailored to a specific video coder and should be general enough

to support videos of different richness. Apart from this, we also

need to address (i) how to assign users into multicast groups,

(ii) how to beamform towards each multicast group, (iii) how

to allocate time across multicast groups, (iv) how to map the

time allocation into a practical packet level scheduler while

avoiding redundancy across multicast groups, and (v) how to

provide resilience and avoid congestion in multicast.
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Our approach: We address the above challenges as follows.

First, to effectively support video streaming to multiple

users with diverse network conditions, we combine layered

coding with rateless code. Layered coding efficiently sup-

ports multicast since the shared lower layer only needs to

be transmitted once to all receivers, whereas conventional

codec requires separate copies to be transmitted if the users

request different resolutions. We use Jigsaw [7], a live 4K

layered video coding implemented on COTS devices. While

the original Jigsaw targets a single user, we address several

new issues in multi-user scenarios, such as cross-layer cross-

user resource allocation and adaptation to unpredictable and

diverse wireless losses at different users. To enhance resilience,

we leverage Raptor code-based [8] source coding within each

layer at the sender. Raptor code is a type of fountain code. The

sender uses the Raptor code to generate a continuous stream

of data for each video layer, and each receiver can decode

the content as soon as it receives enough data. Raptor code

allows efficient re-transmission to multiple receivers while

significantly reducing the receiver feedback overhead.

Second, to support the resource allocation optimization,

we develop a lightweight Deep Neural Network (DNN)-

based utility function that accurately maps the amount of

content received at each layer to Structural Similarity Index

(SSIM) [9], a widely used video quality metric. We identify the

input features that can capture the characteristics of different

videos, which allows us to develop a general model for diverse

videos. Our method is general enough to support other video

quality metrics, such as Peak Signal-to-Noise Ratio (PSNR).

Next, we design a novel framework that optimizes traf-

fic allocation across different user groups. In particular, we

perform multicast beamforming based on the Channel State

Information (CSI) of multiple receivers for each multicast

group. The resulting beams effectively improve the signal

strength to various receivers. Then we optimize the trans-

mission time allocation across different multicast groups and

layers to maximize end-to-end video quality across all users.

The optimized time allocation assumes the traffic is a

continuous stream such that receiving more traffic means

receiving more information. It holds when there is no data

redundancy in traffic. However, redundancy arises when a

user belongs to multiple multicast groups. Interestingly, us-

ing Raptor-code can support efficient re-transmission while

eliminating this redundancy. By encoding packets with Raptor

code, we further map the time allocation to a practical packet

scheduler, which assigns the packets to different multicast

groups. Meanwhile, using Raptor code also builds resiliency

against channel fluctuation. Whenever the channel degrades,

our approach automatically re-transmits the data in the lower

layer to support successful video frame decoding, albeit at a

reduced resolution. In comparison, existing approaches cannot

finish transmitting the data corresponding to the selected rate,

which causes the loss of entire video frames [10].

We implement our system on commercial WiGig devices.

To the best of our knowledge, this is the first layered video

multicast streaming system over commodity mmWave devices.

Our extensive testbed and emulation experiments show that

our design yields above 0.975 SSIM and 43 dB PSNR when

serving two users within the range of 3m, and above 0.94

SSIM and 35dB PSNR when serving up to eight users within

the range of 16m. Moreover, under mobility, our system yields

0.008-0.068 SSIM improvement when serving one single user,

and 0.006-0.248 SSIM improvement when serving three users.

To summarize, our contributions are as follows:

• We develop a lightweight DNN-based video quality model;

• We develop a cross-layer optimization algorithm to derive

beamforming weights and time allocation across different

multicast groups and layers. We further translate the opti-

mized allocation into a practical packet-level scheduler;

• We implement an end-to-end system that addresses several

practical challenges, including using rateless code to avoid

redundancy, lightweight rate control, and adaptation to the

dynamic channel. We demonstrate its effectiveness through

extensive testbed and emulation experiments.

Ethics Statement: No personally identifiable information

(PII) is used. This work does not raise any ethical concern.

II. RELATED WORK

Video Streaming over WiGig: Given the large bandwidth in

mmWave, streaming uncompressed video is a key application

for WiGig. Choi et al. [11] propose a link adaptation policy

that minimizes the total allocated resources by assigning

different amount of resources to different data bits of a pixel.

He et al. [12] encode an uncompressed video into multiple

descriptions using RS coding. The video quality improves

as more descriptions are received. [11, 12] use unequal error

protection to protect different bits of a pixel-based importance.

Shao et al. [13] compress difference pixel values using run-

length encoding. It is challenging to parallelize the run-length

codes since different pixels are unknown in advance. Singh

et al. [14] partition adjacent pixels into different packets and

adapt the number of pixels based on estimated throughput, but

it suffers poor video quality when throughput drops.

Layered video multicast: LVMR [15] deploys an error

recovery scheme using smart retransmission and adaptive

playback point to address the network congestion and het-

erogeneity problem for layered video multicast. RLC [16] is

a receiver-driven congestion control algorithm that is TCP-

friendly and suitable for continuous data transfer. Still, it

lacks an optimization for resource allocation across multicast

groups. SAMM [17] uses congestion feedback to adjust the

number of generated layers and the bit rate of each layer. It

reduces the network congestion but ignores the redundancy

of the received packets by different users when multicast is

applied. Layered video multicast has been considered in the

past (e.g., [18, 19, 20]), but it is still challenging for 4K video

streaming under 60GHz WLAN. 4K layered coding has rarely

been used commercially because of the high computational

cost [7]. The performance of mmWave fluctuates widely with

the mobility of the transmitter, receiver, or environment.
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Beamforming: Many algorithms have been developed to

maximize the beamforming gain. Among them, [21] is one

of the most related work: it develops multicast beamforming

algorithms for 60GHz WLAN. It begins with the finest beams

to ensure reachability and replaces the finer beams with wider

ones to cover more clients if the utility improves. Our work

uses CSI to optimize beamforming, which will yield higher

throughput than the iterative search in [21].

Resource allocation and scheduling: There has been nu-

merous works on resource allocation and packet scheduling

in both single-hop and multi-hop wireless networks. [22, 23]

survey some of existing resource allocation and scheduling

approaches. Our work goes beyond theoretical analyses and

considers several practical protocol design issues, such as

mapping flow-level allocation to packet scheduling, avoiding

redundancy and congestion, and system implementation.

Differences from the related work: Our work is the first end-

to-end 4K video multicast system over COTS WiGig devices.

It leverages layered coding to accommodate heterogeneous

clients, optimizes resource allocation and packet schedules

to achieve efficiency, and uses Raptor code and Leaky-

Bucket-based rate control to avoid redundancy and congestion.

Through system implementation, we also uncover limitations

of commodity mmWave hardware and develop several effec-

tive approaches to address them (e.g., video streaming based

on beamforming and RSS feedback, and pseudo multicast).

III. OUR APPROACH

A. Overview

We use layered coding for video multicast to accommodate

dynamic channel conditions across different users. At a high

level, the video codec partitions a video frame into multiple

layers. Each multicast group is assigned ≥ 1 layers. The

more layers received, the higher the video quality. Hence, we

first develop a DNN model that determines the video quality

based on the amount of traffic received at each layer. Then

we propose an algorithm that optimizes time allocation across

multicast groups to maximize the overall video quality across

users. We further develop a holistic system that turns the

optimization results into protocol configurations and addresses

practical issues, including avoiding redundancy across differ-

ent multicast groups, loss recovery, and rate control.

B. Layered Video Coding

Layered coding is attractive for video multicast since it

allows users with different channel conditions to share layers.

For example, when two users experience different channel

conditions, they will request different videos in DASH [5].

In comparison, layered coding allows them to share the

common low layers. Thus, the benefit of multicast increases

with the number of users. Moreover, layered coding is robust

to throughput fluctuation since the receiver decodes a lower

quality video when throughput drops and a higher quality

video when throughput improves. This feature is desirable for

mmWave, whose throughput tends to fluctuate rapidly.

TABLE I
VIDEO QUALITY MODEL BASED ON DIFFERENT METHODS.

Method SVM Linear Regression DNN

MSE 0.0524 0.0231 2.4313× 10−5
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Fig. 1. Video quality model: (a) DNN Structure (b) Accuracy

We use Jigsaw [7] as the underlying layered video coding

since it supports live 4K video via unicast on COTS devices. It

first divides a video frame into non-overlapping 8x8 blocks of

pixels. The base layer 0 consists of averages of pixel values in

8x8 blocks, which yields 512x270 resolution. Next, it divides

the 8x8 blocks into 4x4 blocks and assigns each 4x4 block

with a pixel value difference between the average of 4x4 block

and the average of 8x8 block, forming layer 1. Similarly, it

forms layer 2 representing the difference of pixel values in 2x2

blocks, and layer 3 representing the difference in 1x1 blocks.

Following the terminology in [7], layers 1-3 contain multi-

ple sub-layers. For example, layer 1 has the difference values

D(i, j, k), where (i, j, k) is the k-th 4x4 block within the

(i, j)-th 8x8 block. The k-th sublayer in layer 1 consists of

D(i, j, k) ∀ i, j. Similarly, we define sublayers in other layers.

C. Video Quality Model

We then design a model to determine the video quality based

on the amount of data received at each layer. The video quality

model is necessary since it is used as an optimization objective

in the resource allocation optimization problem (Sec. III-D).

The models we use to fit the data are Linear Regression,

Support Vector Machine (SVM), and a lightweight DNN.

We generate dataset using 6 uncompressed 4K videos

(4096×2160 resolution) of 1000 frames and YUV420 format

from Derf’s collection under Xiph [24]. We include videos

with various motion and spatial locality. 3 videos are High

Richness (HR) and 3 are Low Richness (LR), where HR and

LR differs by variance in the Y values. We randomly split the

dataset by 7 : 3 for training and testing without overlap.

We feed the DNN with the following input: (i) the number of

packets received at each layer, (ii) SSIM value if everything up

to the i-th layer has been received completely, and (iii) SSIM

value of the blank frame. We include (ii) since different video

frames have diverse SSIM values in each layer. For example,

LR videos have higher SSIM in the base layer. We include (iii)

because the differences between different video frames and a

blank frame vary a lot. Both (ii) and (iii) can be computed

efficiently. The output is the SSIM of the corresponding video

frame. For data collection, we feed different fractions of each

video layer to a video decoder and use FFmpeg to compute

the SSIM.
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TABLE II
MCS, RECEIVER SENSITIVITY AND UDP THROUGHPUT. × MEANS ”NOT SUPPORTED FOR DATA TRAFFIC ON QCA6320 CHIPSET”

MCS
Sensitivity

(dBm)
iPerf3-UDP

(Mbps)
MCS

Sensitivity
(dBm)

iPerf3-UDP
(Mbps)

MCS
Sensitivity

(dBm)
iPerf3-UDP

(Mbps)
MCS

Sensitivity
(dBm)

iPerf3-UDP
(Mbps)

0 -78 × 4 -64 850 8 -61 1580 11 -54 2100
1 -68 300 5 -62 × 9 -59 × 12 -53 2400
2 -66 550 6 -63 1050 9.1 -57 × ≥ 12.1 ≥-51 ×
3 -65 720 7 -62 1250 10 -55 1850 N/A

From Table I, we find DNN performs the best since it

is flexible to capture the non-linear relationship. Our DNN

consists of 5 fully connected layers, as shown in Fig.1(a).

Each layer has the same number of input and output features

(i.e., in features = 9 and out features = 9). A Sigmoid

activation layer follows each fully connected layer. Finally,

the model ends with a linear layer with 9 in features and 1

out features to generate an estimated SSIM value. We use

Adam [25] as the optimizer and MSE as the loss function. The

model is trained using 500 epochs with a batch size of 128.

Fig. 1(b) compares the estimated and actual SSIM, where

the center, lower and upper cap of the error bar denote the

average, lowest and highest accuracy, respectively. Our model

produces high estimation accuracy across all layers. The DNN

inference time is around 500μs on our WiGig devices.

D. Optimizing Transmission Strategy

Built on top of our video quality model, we seek to

determine a transmission strategy that optimizes the end-

to-end video quality across all users. For N clients, we

enumerate all possible user groups. For each user group, we

use beamforming to maximize the minimum Received Signal

Strength (RSS) to the group. We can map the RSS to the

data rate using a standard lookup table as shown in Table II.

We omit the groups whose throughput is below a threshold to

speed up computation. Given the set of multicast groups and

the maximum data rate delivered to each group, our goal is

to derive the time allocation across different multicast groups

and video layers. We formulate the problem as follow:

max
TG,j

∑
i

Q(Di,1, Di,2, Di,3, Di,4)− λ
∑
i

Di,j

subject to Di,j =
∑
i∈G

TG,jRG, ∀i, j (1)

∑
G,j

TG,j ≤ 1

FR

where Q(.) denotes the video quality given the amount of

data received for each layer, Di,j denotes the data volume

that user i receives at layer j, TG,j denotes the time allocated

to multicast group G for sending layer j, RG denotes the

multicast data rate to user group G, and FR is the frame rate.

The objective reflects our goal of maximizing the video

quality, which is a function of the amount of data received

at each layer. We use DNN to learn Q(.) to map the amount

of data received at each layer to video quality (e.g., SSIM) as

described in Sec. III-C. We also include a penalty term defined

by the total traffic weighted by λ, which aims to minimize the

amount of traffic when the video quality is the same. λ is

small to ensure that the video quality is the primary objective,

and total traffic is only used to break ties.

The first constraint reflects that the total amount of data

delivered to a user i at each layer j is the sum of data

transmitted in all groups involving the user i for that layer.

The second constraint enforces that the total transmission time

across all groups and layers is no more than the time budgeted

for the video frame. For example, to reach 30 FPS, any video

frame should be transmitted within 1/30 seconds. Note that

we do not enforce the size restriction for each layer because

a user may receive some redundant data if it participates in

multiple multicast groups. However, optimizing our objective

will automatically minimize redundancy.

E. Multicast Beamforming

To support the optimization, we need to determine the

throughput for each multicast group. We use beamforming to

improve the RSS for a given multicast group. We then map

the RSS to the data rate, which is the input of Problem 1.

Given an AP with Nt antennas and a STA with Nr antennas,

the frequency-domain received signal can be expressed as:

y = [F]1×Nt [h]Nt×Nr [W]Nr×1s+ n (2)

where [·]m×n is the dimension of matrices, h is the CSI

matrix, W and F are the STA’s combiner and AP’s precoder,

respectively, s is the normalized signal, and n is the noise.

In IEEE 802.11ad [26] and 802.11ay [27], AP performs

Sector-Level-Sweeping (SLS) to determine the proper pre-

coder F. Suppose the STA only has one quasi-omnidirectional

antenna. The AP operates with a set of K predefined beams

formed by [F]Nt×K , whose radiation patterns jointly cover

the azimuth plane. The AP first broadcasts beacon frames

precoded with different columns in F. Then, STA measures

the sequence of per-beam RSS, denoted as [r]K , where rk =
|Fkh+n|2 and k is the beam index. The STA feeds back AP

the best beam index, i.e., argmax
k∈K

[rk]K . Current WiGig cards

(e.g. Sparrow+ [28]) support at most K = 128 due to limited

on-board memory, and non-trivial beam training overhead

[29]. Moreover, the AP cannot exhaust the precoders since

the search space increases exponentially with Nt and phase

shifter bits M , namely MNt . Hence, the selected codebook

may not be optimal.

CSI-based beamforming can achieve better performance

than SLS. Existing approaches, such as ACO [30] and 2ACE

[4], can estimate the CSI matrix of each receiver. Given the

CSI, we can optimize the unicast codebook as hH/||h||.
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To multicast to N users, we find F that satisfies:

max
F

min[r]1×N = |F[(h1,h2, . . . ,hN )]| (3)

where hi is the channel matrix of i-th receiver.

The Max-Min problem in Eq.3 is NP-hard [31]. To speed

up the optimization, we observe that finding the maximum

sum RSS of a group of receivers can be optimized efficiently

using singular value decomposition (SVD) [31]. Specifically,

suppose we want to maximize
∑

r = ‖HF′‖2, where H �
[h1;h2; ...hn]. Decomposing H = UΣV′, the beamforming

weight F is the first column of V. While the Max-Sum is

different from our original goal, it is a good heuristic.

Based on the optimized F, we derive the RSS and select

the Modulation and Coding Scheme (MCS) accordingly. The

corresponding data rate of each multicast group is fed to

Problem 1 for optimization.

F. Packet Scheduling

The optimization output from Problem 1 indicates how

much traffic to transmit to each multicast group at each layer.

We use it to guide packet scheduling. The new issue we

should address is how to avoid data redundancy. For example,

when the output says sending 30%, 40%, and 50% of layer

2 to multicast groups 1, 2, and 3, which portion of layer 2

should be sent to ensure that the users involved in multiple

multicast groups receive minimal redundant packets? A simple

approach is to send packets directly from the layered encoder

like Jigsaw, which requires a careful packet assignment to

different groups to minimize redundancy. Moreover, in the

presence of packet loss, which is common in WiGig links,

we also need feedback for loss recovery.

Source coding can simplify the design and significantly

reduce data redundancy and feedback overhead. We use Raptor

Code [8], a fast rateless code, to further encode Jigsaw-

encoded data into a continuous data stream. Unlike the original

symbols, any two Raptor coded symbols carry different infor-

mation and the receiver just needs to accumulate enough coded

symbols for successful decoding. We choose Raptor Code

because any reception of K packets can be decoded with a

high probability. Specifically, receiving K+h symbols yields a

decoding probability of 1−1/256h+1, where K is the number

of symbols to code and h is the number of extra symbols

received. Raptor code significantly simplifies our transmission

strategy – the sender continuously generate data stream until

the receivers can decode. We port the Rust-based RaptorQ [32]

to C++ and integrate it with Jigsaw.

To use rateless code, we need to determine the symbol size

and the number of symbols for coding. We use a sublayer in

Jigsaw as a coding unit. The symbol size affects the encoding

and decoding time. As shown in Fig. 2, the encoding and

decoding time both initially decrease with the symbol size

and then increase. We set the symbol size to 6000B, which is

close to the shortest encoding and decoding time.

Each sublayer contains 20 symbols. Data within the same

sublayer is equivalent, each adding new information related to

the same sublayer. However, data across different sublayers is
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Fig. 2. RaptorQ encoding and decoding time changes with the packet size. (a)
Overall trend. (b) Detailed trend of encoding. (c) Detailed trend of decoding

different. Therefore, instead of tracking at packet-level, we

should track the sublayer-level reception status. This state

is much smaller to maintain. Two issues remain to be ad-

dressed: (i) how to map traffic allocation across layers and

multicast groups in Problem 1 to the allocation across coding

groups since only packets within the same coding group are

equivalent and packets belonging to different coding groups

carry different information, and (ii) how to maintain the group

information.

To address (i), we need to split the transmissions across

multiple coding groups within the layer to maximize the

information to be decoded. Specifically, denote S(G, j) as the

transmission size allocated to the multicast group G and layer

j, sss(G, i, j) as the transmission size allocated to the coding

group i in layer j at group G, and ss(u, i, j) as the total

decoded traffic by user u for the coding group i in layer j.

We formulate the following optimization problem:

max
∑
i

∑
u

ss(u, i, j)

subject to ∀G, j :
∑
i

sss(G, i, j) ≤ S(G, j) (4)

∀u : ss(u, i, j) =

{
size(i, j),

∑
u∈G sss(G, i, j) ≥ size(i, j)

0, o.w.

Our goal is to find sss(G, i, j) that maximizes the total

received traffic across all coding groups and users. The first

constraint indicates the total traffic received across all coding

groups within a layer j and multicast group G is bounded

by the total allocation for the layer. The second constraint

indicates the total traffic to be decoded is either the complete

coding group when we receive at least the coding group size

amount of data or 0 otherwise. This is due to the nature of

source coding, which requires receiving enough data to decode

the coding group. The second constraint can be converted into

an integer linear constraint using an indicator variable. Let

u = ss(u, i, j), S = size(i, j), v =
∑

u∈G sss(G, i, j). We

can convert the second constraint into 0 ≤ S − v + ku ≤ kS
and u ∈ {S, 0}. When v ≥ S, S − v is negative, u has to be

S; when v < S, S− v is positive, u has to be 0 to satisfy the

inequity. We solve it using a greedy heuristic where we assign

traffic to the coding groups in an increasing order; within the

same coding group, we assign it to the multicast groups in

an increasing order of group id until all receivers across each

group get the complete data.

To address (ii), we let the receiver report the number

of packets it receives for each sublayer and each multicast

group. Upon receiving the feedback, the sender takes the
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difference between the number of packets it has sent and

the number of the packets reported by the receiver. Let P
denote the difference between the two numbers. The sender

will transmit additional P packets as a makeup for the packet

loss. Using Raptor code, we reduce the feedback from packet-

level to sublayer-level, which is easier to track. Moreover, to

support live video streaming and coding, the feedbacks and all

retransmissions should finish within 33 ms for 30 FPS videos.

G. Leaky Bucket-Based Rate Control

Transmission Control Protocol (TCP) is widely used for

unicast congestion control and loss recovery. However, our

system targets multicast and uses Raptor code to generate

newly coded packets for loss recovery instead of retransmitting

the lost packets. Therefore, we use User Datagram Protocol

(UDP). Our rate control problem is unique because it needs

to support multicast and the priorities of different layers (i.e. ,
first ensure lower layers are received).

To meet the requirements, we use Leaky-Bucket [33]-based

rate control. For each multicast group, we have a credit that

specifies the maximum bytes the sender can send for a given

time. The sender periodically increments the credit based on

the desired sending rate of the group. It may send new data

if it has enough credit. Upon each packet transmission, the

sender decrements the credit by the packet size.

There are two critical parameters in the Leaky Bucket: the

average credit filling rate and maximum credit the bucket can

hold at a time. We set the former to the expected throughput.

To limit the delay, we set the latter to a small value (e.g., 10

packets) that still sustain high throughput.

In the beginning, the expected throughput is determined

by the UDP throughput of the selected MCS. To keep up

with the time-varying channel and avoid overhead, we let

the receiver periodically measure the link bandwidth based

on the difference in the arrival time of 100 data packets and

feedback it to the sender. Moreover, for improved channel

conditions, the packets used for bandwidth estimation should

not be subject to the rate control and should be sent back

to back. Hence, these packets are more likely to miss due

to congestion. Since losses in the lower layers are lethal to

the video quality, we use the packets from the highest layer

for bandwidth measurement. The sender uses the bandwidth

reported by the receiver during the previous video frame

transmission to control the sending rate of a new video frame.

H. Adapting to Dynamic Channel

As mentioned in Sec. III-E, CSI is required to optimize

beamforming. We use the framework developed in ACO [30]

and X-array [34] to estimate CSI based on SLS RSS feedback.

We have performed testbed experiments in static scenarios.

For mobile cases, the patched firmware cannot stably dump

SLS RSS when there is lots of data traffic. Therefore, we

record the RSS traces measured at each receiver to compute

CSI. We then use the CSI trace to drive emulation, which runs

the same code as the testbed except that the data traffic is sent

over emulated links. The trace-driven emulation allows us to

AP (Server) 
Loads ACO
Codebook 

AP Calculates
Best Multicast

Codebook

AP Runs 
Scheduling 

Optimization

AP Renders
Video Frame

Fig. 3. System Workflow

compare various algorithms under the same channel condition,

which is hard to enforce in mobile scenarios.

IV. TESTBED IMPLEMENTATION

We build our video-streaming system on 4 Acer Trav-

elmate P658 laptops with Intel i7-6500U CPU, NVIDIA

GeForce 940M graphics card, and Qualcomm QCA6320-

based 802.11ad network card. One laptop serves as an AP

(server, video encoder), and three serve as STAs (clients,

video decoder). The GPU on our platform performs similar to

Qualcomm Adreno 650, a mainstream mobile GPU currently

used on Oculus Quest 2 VR headset and Samsung S20 series.

A. System Workflow

As shown in Fig. 3, our system begins with fetching CSI

using ACO [30]. Then, it calculates the multicast beamweights

and measure their respective RSS. The measured RSS of each

multicast beamweight are then mapped to throughput of each

multicast group. The scheduling optimizer uses these through-

puts to calculate the optimized schedule. Loading the opti-

mized schedule and beamweights, the AP then calls network

interface command WMI SET SELECTED RF SECTOR INDEX
(cmd id: 0x9A3) to enforce multicast beams and calls

HW SYSAPI FORCE MCS (cmd id: 0x900 ut subtype id: 0x6)

to set MCS accordingly. Then it sends out video data at

the rate according to the UDP throughput corresponding to

the specified MCS (see Table II). These two commands take

≈ 25μs, which is only 0.075% of the per-frame transmission

time for 30 FPS and 0.15% for 60 FPS. To adapt to dynamic

channel (e.g., channel degradation), the STAs continuously

monitors the packet arrival rate and feeds back to the AP.

The AP uses the reported rate to adjust its sending rate using

the leaky bucket-based rate control.

B. Pseudo Multicast

A natural way to implement multicast is to let the WiGig

card send multicast traffic. However, QCA6320 does not offer

API to change MCS for multicast traffic. Multicast traffic can

only use MCS 1 (sub-300 Mbps). To bypass this limitation,

we associate one STA with the AP as a regular receiver and

set all the other STAs to the monitor mode, which allows

them to capture the data traffic not destined to them. This

approach effectively achieves multicast while supporting any

MCS. Another benefit is that the regular receiver can still enjoy

MAC layer retransmissions and binary backoff in CSMA.
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C. Throughput

As shown in Table II, QCA6320 chipset only implements

MCS from 0 to 12 excluding 5, 9, and 9.1 in 802.11ad [26].

Existing works [34, 35, 36] use RSS sensitivity table in [26]

to map the RSS to MCS and data rate. We use the same table

to determine the MCS of a multicast group based on the RSS.

But the throughput we feed to the resource optimization is the

measured UDP throughput as listed in the 3rd column of Table

II, which considers the PHY/MAC overhead. Each value is the

average of twenty 10-second iPerf3 runs.

V. PERFORMANCE EVALUATION

A. Evaluation Methodology

We implement our multicast video streaming system in

both testbed and emulator. Both run the same video encoder,

decoder, scheduler, source coding, and rate control. The only

difference between the testbed and emulation experiments is

that data is transmitted over the WiGig links, and beamforming

is performed on phased arrays in the testbed, while data are

sent over an emulated link in the emulator. These two method-

ologies are complementary since the testbed evaluates the per-

formance under realistic channel conditions while emulation

allows us to consider using more extensive topologies. We use

2 HR videos and 2 LR videos from the dataset described in

Sec. III-C. Each of them is 30FPS and lasts at least 5 minutes.

B. Testbed Evaluation

We perform testbed evaluation indoor as shown in Fig.4(a).

Unless otherwise specified, we use the following default

configuration: the sender uses optimized multicast beamform-

ing; all 3 clients are 3m away from the sender with their

angular spacing randomly selected between 0 and 30◦, i.e., the

Maximum Angular Spacing (MAS) (i.e., the spacing from the

leftmost to the rightmost station) is 30◦. We use high-richness

videos and perform 10 random runs.

1) Impact of Beamforming

We compare the following beamforming schemes: (i) op-

timized multicast beamforming (Sec. III), (ii) pre-defined

multicast beam, (iii) optimized unicast beamforming, and (iv)

pre-defined unicast beam. They all use the same optimization

framework in Section III-D to optimize the schedule, and the

only difference is the data rate fed to the optimization, which is

derived based on the RSS. As expected, (i) > (ii) > (iii) > (iv).

(i) generates multi-lobe beam pattern that covers multiple users
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Users: 2; MAS: 30◦. (a) SSIM. (b) PSNR.

at the same time, and performs the best. (ii) under-performs

(i) due to the use of predefined beams, but out-performs (iii)

and (iv) due to the use of multicast.

The STAs are 3m apart from the AP and the MAS between

the users is 60◦ as shown in Fig.4(a). The results are shown in

Fig. 5, where the lines on the box from the top to the bottom

are the max, 1st quartile, median, 3rd quartile and min. In

all cases, optimized multicast beamforming performs the best.

Its benefit increases with the number of users. For example,

the SSIM improvements over pre-defined multicast, optimized

unicast, and pre-defined unicast are 0.012, 0.016, and 0.038 in

2 users; and 0.021, 0.023, and 0.045 in 3 users, respectively.

The PSNR improvements are 2.5 dB, 2.9 dB, and 5.6 dB in 2

users, respectively; and 3.2 dB, 3.3 dB, and 5.4 dB in 3 users,

respectively. 3 dB PSNR improvement means that the video

quality doubles. Hence, the optimized multicast beamforming

has a large advantage over the other methods. The variance of

pre-defined unicast among 3 users is large since the best pre-

defined beams may or may not steer towards the receiver. The

user in the beam direction receives high video quality while

others’ video quality degrades significantly.

Impact of distances: Fig. 6 compares the performance as

we vary the distance between the AP and STAs in testbed.

There are 2 users, and their MAS is 30◦. The SSIM at 3m are

0.976, 0.965, 0.963, and 0.939 for optimized multicast, pre-

defined multicast, optimized unicast,and pre-defined unicast,

respectively, while the SSIM at 6m are 0.966, 0.955, 0.951

and 0.924, respectively. Due to the layered video coding and

schedule optimization, the video quality degrades gracefully

with the increasing distance. Among different beamforming

schemes, the optimized multicast beamforming continues to

be the best: it out-performs the other schemes by 0.011-0.042
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in terms of SSIM and by 1.8-5.6 dB in terms of PSNR.

Impact of Maximum Angular Spacing (MAS): We place

2 users at 3m and vary the MAS. Fig. 7 shows that the

optimized multicast beamforming out-performs other alter-

natives by 0.018-0.048 improvement in SSIM and 3-6 dB

improvement in PSNR across all different MAS. Moreover,

MAS has little impact on unicast performance but affects

multicast performance as we expect.

2) Impact of Schedule

Fig. 8 compares our scheduling with the round-robin [37]

scheduling, which enumerates all possible user groups and

uses round-robin to schedule across different user groups (i.e.,
the sender transmits to each group for 1 ms and then uses the

round-robin to select the next group to transmit for 1 ms, and

so on). As we can see, our scheduling performs the same as

the round-robin for 2 users because there is only one multicast

group for 2 users. However, our scheduling out-performs the

round-robin by 0.03 in SSIM and 3.2 dB in PSNR for 3

users because our approach allocates the transmission time

across different user groups by explicitly considering their link

quality and the impact of transmissions on video quality.
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Fig. 10. Testbed comparison between with and without source coding.
# Users: 3; Distance: 3m; MAS: 60◦; Beamforming: optimized multicast
beamforming. (a) SSIM. (b) PSNR.

3) Impact of Rate Control

Fig. 9 shows the performance of our rate control approach.

Without rate control, the AP sends packets to the driver

continuously until the kernel’s queue is full. This triggers

packet drop and lead to low quality for several frames. So

removing rate control reduces the SSIM by 0.01 and PSNR

by 1.3 dB. Moreover, it yields larger variance in video quality

since its performance fluctuates with random queue drops.

Our leaky bucket-based rate control reduces packet drops at

the kernel and maintains high SSIM across all frames over

different runs.

4) Impact of Source Coding

Fig. 10 evaluates the impact of source coding. Using source

coding out-performs without source coding by 0.32 in SSIM

and 9.5 dB in PSNR. The result shows that multicast with-

out source coding has much worse performance and higher

variance due to inefficient retransmission to multiple receivers

and redundancy arising from multicast groups with shared

receivers.

C. Emulation Evaluation

Then, we evaluate our design using emulation. We first

consider static cases. We use a lidar scanner to reconstruct 3D

model of a meeting room and feed it to Wireless Insite [38], a

popular commercial 3D ray-tracer widely used by the research

community [39, 40], to generate realistic wireless channel. We

place the users in two different ways: clients are randomly

placed at a fixed distance (4m, 8m, 12m or 16m) from the

server, or clients are randomly distributed between 8m and

16m from the server as shown in Fig.4(b). We perform 100

random runs for each configuration and show the aggregated

results. Next, we evaluate mobile scenarios with CSI traces

collected from testbed while moving the clients or environ-

ment. Data are sent over an emulated link according to the

traces, so no extra packets will be dropped over the channel.

In this case, the video quality may be slightly higher than that

in testbed under the same experimental setting.

1) Impact of Beamforming

Varying the number of clients: Fig. 11 shows the result when

a varying number of clients are randomly placed between 8m

and 16m from the server and the MAS between users is 120◦.
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The multicast with optimized beamforming improves over pre-

defined multicast, optimized unicast, and pre-defined unicast

by 0.010, 0.013, and 0.025 in 2 user case, respectively. The

corresponding numbers are 0.025, 0.025, and 0.055 in 4 users,

0.03, 0.04, and 0.075 in 6 users, 0.035, 0.06, and 0.083 in 8

users, respectively. The corresponding PSNR advantage ranges

from 2.6 dB - 4.7 dB in 2 users scenario, 3 dB-5 dB in 4 users

scenario, 3 dB-5.8 dB in 6 users scenario, and 3.3 dB-5.9 dB

in 8 users scenario.

The emulation result further verifies our conclusion from the

testbed experiment that the multicast benefit increases with the

number of users since a single transmission can satisfy more

users in multicast. The exact amount of improvement depends

on the difference in SNR across the users as the bottleneck

user limits the multicast throughput. Moreover, multicast also

improves fairness since multicast tries to transmit packets that

benefit multiple users.

Impact of distance: We further evaluate the impact of the

distance between the server and users. As shown in Fig. 4(b),

we place the users at 4m, 8m, 12m, and 16m with 120◦ MAS.

The server operates with optimized beamforming. As shown in

Fig. 12, the performance of optimized multicast beamforming

slightly fluctuates as the distance and the number of users vary.

The average SSIM difference across number of users is 0.01,

0.015, 0.025, and 0.03 at 4m, 8m, 12m, and 16m, respectively.

As we have concluded in the testbed evaluation, the average

SSIM difference between the number of users increases with

the distances because of our layered video coding and schedule

optimization.

Impact of Maximum Angular Spacing (MAS): Fig. 13 com-

pares the performance when 6 users are placed at 12m from
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Fig. 14. Emulation comparisons of with and without source coding. Distance:
8-16m; MAS: 120◦. (a) SSIM. (b) PSNR

the sender. In all cases, optimized or pre-defined multicast

beamforming out-performs optimized or pre-defined unicast

beamforming. Multicast performs the best when the MAS is

small since it can concentrate the beam towards closely spaced

users. In comparison, two unicast schemes perform similarly

across different MAS as unicast is always directed to the target

receiver and not affected by the locations of other receivers.

2) Impact of Source Coding

Next, we evaluate the impact of source coding by enabling

or disabling source coding. In both cases, we use optimized

multicast beamforming and scheduling. Fig. 14 shows the

video quality for 4, 6, and 8 users that are randomly placed

between 8m and 16m from the server. As we can see, our

source coding helps to remove redundancy and improves the

video quality by around 0.005-0.025 SSIM and 1-3dB PSNR.

The emulation result draws the same conclusion as our testbed

evaluation.

3) Impact of Scheduling

Fig. 15 compares our scheduling with round-robin schedul-

ing while both use optimized multicast beamforming. Similar

to Fig. 8, when there are 2 users, there is only one multicast
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group, and there is no difference in the two scheduling

algorithms. Our scheduler improves over the round-robin by

0.029, 0.030, and 0.052 in SSIM and 2.5, 2.7, and 4.8dB

in PSNR under 4, 6, and 8 users scenarios, respectively. As

expected, the importance of scheduling increases with the

number of users.

4) Trace-driven Mobile Experiment

As explained in Sec.III-H, due to hardware limitations, we

evaluate mobile scenario using the trace-driven method, which

allows a fair comparison between different approaches under

the same condition. The first type of mobile trace is obtained

from moving receivers. While the server is broadcasting

ACO beacon frames, two people hold the laptops (serving

as clients) and walk randomly for a minute, and the clients

measure CSI. The CSI measurements from different clients are

synchronized with the server’s timestamp. Since the beacon

interval is 100ms [26], we have 10 CSI measurements per

second. The second type of mobile trace is obtained from

moving environment. While the server is broadcasting ACO

beacon frames, two people walk randomly between the server

and receivers to disturb wireless signals. The sender adapts

beamforming weights, time allocation and packet schedule

according to the each measurement in the CSI traces. We call

it Real-time Update.

We first compare the approach that uses the beamforming,

time allocation, and schedule computed at the beginning of the

experiment, but does not adapt to the dynamic channel. We

call this approach No Update. Then, we compare our approach

with Adaptive bitrate (ABR) algorithms. [10] implements 7

ABR algorithms. [41] reports Robust MPC [42] and Fast MPC

are two of the best ABR algorithms for live video streaming,

which are used as our baselines. The two baselines make

bitrate decisions by solving an optimization problem of the

QoE for the next n chunks (e.g., n = 5). Although they

perform well under static network conditions, they cannot

sustain a good video quality in a mobile environment. The

reason is that DASH streaming typically uses standard video

codecs, such as H264, HEVC, and VP9. The above codecs

fail to decode subsequent frames if the current frame is not

decoded due to packet loss. In comparison, our layered coding

is more resilient to channel degradation. Moreover, the existing

RPC based methods are tailored for unicast streaming. Robust

MPC and Fast MPC differ from Real-time Update by using

H264 as the video codec, only applying our rate control

approach, and adopting round-robin scheduling for multicast

streaming.

For brevity, we only show SSIM in this section. We first

compare all approaches under a single user. We use the RSS

sensitivity of MCS 8 (-61dBm) as the separation of the high

RSS and low RSS. Fig.16 (a) shows the video quality of a

single moving user under high RSS. On average, the Real-

time Update out-performs the No Update, the Robust MPC,

the Fast MPC by 0.008, 0.018, 0.016 in SSIM. Under high

RSS, the two MPCs have similar performance for the single

user unicast, but they are worse than the Real-time Update.

The video quality of a single moving user under low RSS

is shown in Fig.16 (b). The Real-time Update out-performs

the No Update, the Robust MPC, the Fast MPC by 0.008,

0.021, and 0.068 in SSIM, respectively. As the network

condition worsens, the Robust MPC and Fast MPC have higher

degradation than the Real-time Update. The benefit of the

Real-time Update over the No Update mainly comes from our

adaptation to the dynamic channel. The benefit over other two

baselines comes from the effectiveness of our layered coding.

Fig.16(c) shows that the Real-time Update out-performs the

No Update, the Robust MPC, the Fast MPC by 0.004, 0.017,

0.017 in SSIM under the moving environment where two

people are walking randomly between the server and receiver.

Since the network condition for the single user unicast remains

stable, there is no difference between the two baselines and no

significant video quality degradation. However, the Real-time

Update is still the best among all approaches.

Then we compare these approaches when serving three

users. We randomly move two of the receivers and keep the

other receiver static. The Robust MPC and Fast MPC need

to allocate time resources to each user for unicast, leading to

a lower video quality than our multicast approach. Fig.17(a)

shows the video quality of serving three receivers under high

RSS. The Real-time Update can maintain high video quality

when the SNR is still high: its SSIM is consistently above 0.95.

In contrast, the video quality under the No Update fluctuates

widely over time since the initial beamforming and schedule

cannot work well at new clients’ locations. The two MPC

schemes have worse performance because they have coarse-

grained bitrate options and cannot adapt within a group of

pictures (GoP). When there is a large throughput drop, they

still attempt to send at a higher rate, which cannot finish before

the deadline. On average, the Real-time Update out-performs

the No Update, the Robust MPC, the Fast MPC by 0.034,

0.059, and 0.064 in SSIM. The higher gain is due to the

combined benefits from our layered coding and multicast.

Fig.17(b) shows the video quality of serving three receivers

under low RSS. The Real-time Update out-performs the No

Update, the Robust MPC, the Fast MPC by 0.026, 0.087,

and 0.248 in SSIM, respectively. Since the SSIM degrades

non-linearly with the decreasing throughput, the benefit of the

Real-time Update over the No Update reduces. As the network

condition worsens, the Robust MPC and Fast MPC have larger

degradation than Real-time Update and No Update due to the

limitations in ABR. Note that the lowest SSIM in Fig.17(b) is

higher than that in Fig.16(b) because the former has at least

one static receiver that does not suffer degradation, whereas
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Fig. 16. Emulation result of serving 1 receiver when (a) receiver is moving under High RSS (≥ −61dBm), (b) receivers are moving under Low RSS
(< −61dBm), and (c) environment is moving.
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Fig. 17. Emulation result of serving 3 receivers when (a) two receivers are moving under High RSS (≥ −61dBm), (b) two receivers are moving under Low
RSS (< −61dBm), and (c) environment is moving.

the latter has only one receiver that experiences degradation.
Fig.17(c) shows the video quality of serving three receivers

under the moving environment. The Real-time Update out-

performs the No Update, Robust MPC, and Fast MPC by

0.006, 0.055, and 0.056 in SSIM. As the people move, the

network condition fluctuates. We see that the No Update is

not affected much because it uses the same beamforming and

time allocation as calculated at the beginning. Although the

benefit over No Update gets smaller, our approach for three

users yields a larger improvement over the two MPC schemes

than the case of serving one user due to the additional multicast

benefit.

VI. CONCLUSION

We develop an end-to-end live 4K video multicast system. It

encompasses several significant components: modeling video

quality, optimizing traffic allocation, packet scheduling, us-

ing source coding to address redundancy issues, leveraging

rate control to avoid congestion, and adaptation to dynamic

channels. We address specific research challenges and develop

an effective end-to-end system. Our extensive experiments

demonstrate its effectiveness.
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